toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Brane-world and loop cosmology from a gravity-matter coupling perspective Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 740 Issue Pages 73-79  
  Keywords Modified gravity; Palatini formalism; f(R) theories; Gravity-matter coupling; Quadratic cosmology  
  Abstract We show that the effective brane-world and the loop quantum cosmology background expansion histories can be reproduced from a modified gravity perspective in terms of an f (R) gravity action plus a g(R) term non-minimally coupled with the matter Lagrangian. The reconstruction algorithm that we provide depends on a free function of the matter density that must be specified in each case and allows to obtain analytical solutions always. In the simplest cases, the function f (R) is quadratic in the Ricci scalar, R, whereas g(R) is linear. Our approach is compared with recent results in the literature. We show that working in the Palatini formalism there is no need to impose any constraint that keeps the equations second order, which is a key requirement for the successful implementation of the reconstruction algorithm.  
  Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347046200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2099  
Permanent link to this record
 

 
Author (up) Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Semiclassical geons at particle accelerators Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 010 - 25pp  
  Keywords modified gravity; Wormholes; quantum black holes  
  Abstract We point out that in certain four-dimensional extensions of general relativity constructed within the Palatini formalism stable self-gravitating objects with a discrete mass and charge spectrum may exist. The incorporation of nonlinearities in the electromagnetic field may effectively reduce their mass spectrum by many orders of magnitude. As a consequence, these objects could be within (or near) the reach of current particle accelerators. We provide an exactly solvable model to support this idea.  
  Address [Omla, Gonzalo J.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000332711400010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1733  
Permanent link to this record
 

 
Author (up) Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Importance of torsion and invariant volumes in Palatini theories of gravity Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 88 Issue 8 Pages 084030 - 11pp  
  Keywords  
  Abstract We study the field equations of extensions of general relativity formulated within a metric-affine formalism setting torsion to zero (Palatini approach). We find that different (second-order) dynamical equations arise depending on whether torsion is set to zero (i) a priori or (ii) a posteriori, i.e., before or after considering variations of the action. Considering a generic family of Ricci-squared theories, we show that in both cases the connection can be decomposed as the sum of a Levi-Civita connection and terms depending on a vector field. However, while in case (i) this vector field is related to the symmetric part of the connection, in (ii) it comes from the torsion part and, therefore, it vanishes once torsion is completely removed. Moreover, the vanishing of this torsion-related vector field immediately implies the vanishing of the antisymmetric part of the Ricci tensor, which therefore plays no role in the dynamics. Related to this, we find that the Levi-Civita part of the connection is due to the existence of an invariant volume associated with an auxiliary metric h(mu v), which is algebraically related with the physical metric g(mu v).  
  Address [Olmo, Gonzalo J.] Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: gonzalo.olmo@csic.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000326107300007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1630  
Permanent link to this record
 

 
Author (up) Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Nonsingular black holes in quadratic Palatini gravity Type Journal Article
  Year 2012 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 72 Issue 8 Pages 2098 - 5pp  
  Keywords  
  Abstract We find that if general relativity is modified at the Planck scale by a Ricci-squared term, electrically charged black holes may be nonsingular. These objects concentrate their mass in a microscopic sphere of radius r(core) approximate to N(q)(1/2)l(P)/3, where l(P) is the Planck length and N-q is the number of electric charges. The singularity is avoided if the mass of the object satisfies the condition M-0(2) approximate to m(P)(2)alpha N-3/2(em)q(3)/2, where m(P) is the Planck mass and alpha(em) is the fine-structure constant. For astrophysical black holes this amount of charge is so small that their external horizon almost coincides with their Schwarzschild radius. We work within a first-order (Palatini) approach.  
  Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000308239900030 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1138  
Permanent link to this record
 

 
Author (up) Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Nonsingular Charged Black Holes A La Palatini Type Journal Article
  Year 2012 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume 21 Issue 8 Pages 1250067 - 6pp  
  Keywords Extended theories of gravity; Palatini formalism; Planck scale  
  Abstract We argue that the quantum nature of matter and gravity should lead to a discretization of the allowed states of the matter confined in the interior of black holes. To support and illustrate this idea, we consider a quadratic extension of general relativity (GR) formulated a la Palatini and show that nonrotating, electrically charged black holes develop a compact core at the Planck density which is nonsingular if the mass spectrum satisfies a certain discreteness condition. We also find that the area of the core is proportional to the number of charges times the Planck area.  
  Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Dept Fis Teor, Fac Fis, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000308497500002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1154  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva