toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Escrihuela, F.J.; Forero, D.V.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title On the description of nonunitary neutrino mixing Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue 5 Pages 053009 - 16pp  
  Keywords  
  Abstract Neutrino oscillations are well established and the relevant parameters determined with good precision, except for the CP phase, in terms of a unitary lepton mixing matrix. Seesaw extensions of the Standard Model predict unitarity deviations due to the admixture of heavy isosinglet neutrinos. We provide a complete description of the unitarity and universality deviations in the light-neutrino sector. Neutrino oscillation experiments involving electron or muon neutrinos and antineutrinos are fully described in terms of just three new real parameters and a new CP phase, in addition to the ones describing oscillations with unitary mixing. Using this formalism we describe the implications of nonunitarity for neutrino oscillations and summarize the model-independent constraints on heavy-neutrino couplings that arise from current experiments.  
  Address [Escrihuela, F. J.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46980 Valencia, Spain, Email: franesfe@alumni.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000361303200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2389  
Permanent link to this record
 

 
Author (up) Escrihuela, F.J.; Tortola, M.; Valle, J.W.F.; Miranda, O.G. url  doi
openurl 
  Title Global constraints on muon-neutrino nonstandard interactions Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 9 Pages 093002 - 8pp  
  Keywords  
  Abstract The search for new interactions of neutrinos beyond those of the standard model may help to elucidate the mechanism responsible for neutrino masses. Here, we combine existing accelerator neutrino data with restrictions coming from a recent atmospheric neutrino data analysis in order to lift parameter degeneracies and improve limits on new interactions of muon neutrinos with quarks. In particular, we reconsider the results of the E-815 experiment at Fermilab (NuTeV) in view of a new evaluation of its systematic uncertainties. We find that, although constraints for muon neutrinos are better than those applicable to tau or electron neutrinos, they lie at the few X 10(-2) level, not as strong as previously believed. We briefly discuss prospects for further improvement.  
  Address [Escrihuela, F. J.; Tortola, M.; Valle, J. W. F.] Univ Politecn Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: franesfe@alumni.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290230200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 616  
Permanent link to this record
 

 
Author (up) Esteves, J.N.; Joaquim, F.R.; Joshipura, A.S.; Romao, J.C.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title A(4)-based neutrino masses with Majoron decaying dark matter Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 7 Pages 073008 - 8pp  
  Keywords  
  Abstract We propose an A(4) flavor-symmetric SU(3) circle times SU(2) circle times U(1) seesaw model where lepton number is broken spontaneously. A consistent two-zero texture pattern of neutrino masses and mixing emerges from the interplay of type-I and type-II seesaw contributions, with important phenomenological predictions. We show that, if the Majoron becomes massive, such seesaw scenario provides a viable candidate for decaying dark matter, consistent with cosmic microwave background lifetime constraints that follow from current WMAP observations. We also calculate the subleading one-loop-induced decay into photons which leads to a monoenergetic emission line that may be observed in future x-ray missions such as Xenia.  
  Address [Esteves, J. N.; Romao, J. C.] Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal, Email: joaomest@cftp.ist.utl.pt  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282812200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 360  
Permanent link to this record
 

 
Author (up) Farzan, Y.; Tortola, M. url  doi
openurl 
  Title Neutrino oscillations and non-standard Interactions Type Journal Article
  Year 2018 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 6 Issue Pages 10 - 34pp  
  Keywords neutrino oscillations; leptonic CP violation; non-standard neutrino interactions; neutrino masses; neutrino physics  
  Abstract Current neutrino experiments are measuring the neutrino mixing parameters with an unprecedented accuracy. The upcoming generation of neutrino experiments will be sensitive to subdominant neutrino oscillation effects that can in principle give information on the yet-unknown neutrino parameters: the Dirac CP-violating phase in the PMNS mixing matrix, the neutrino mass ordering and the octant of.23. Determining the exact values of neutrino mass and mixing parameters is crucial to test various neutrino models and flavor symmetries that are designed to predict these neutrino parameters. In the first part of this review, we summarize the current status of the neutrino oscillation parameter determination. We consider the most recent data from all solar neutrino experiments and the atmospheric neutrino data from Super-Kamiokande, IceCube, and ANTARES. We also implement the data from the reactor neutrino experiments KamLAND, Daya Bay, RENO, and Double Chooz as well as the long baseline neutrino data from MINOS, T2K, and NO.A. If in addition to the standard interactions, neutrinos have subdominant yet-unknown Non-Standard Interactions (NSI) with matter fields, extracting the values of these parameters will suffer from new degeneracies and ambiguities. We review such effects and formulate the conditions on the NSI parameters under which the precision measurement of neutrino oscillation parameters can be distorted. Like standard weak interactions, the non-standard interaction can be categorized into two groups: Charged Current (CC) NSI and Neutral Current (NC) NSI. Our focus will bemainly on neutral current NSI because it is possible to build a class of models that give rise to sizeable NC NSI with discernible effects on neutrino oscillation. These models are based on new U(1) gauge symmetry with a gauge boson of mass. 10 MeV. The UV complete model should be of course electroweak invariant which in general implies that along with neutrinos, charged fermions also acquire new interactions on which there are strong bounds. We enumerate the bounds that already exist on the electroweak symmetric models and demonstrate that it is possible to build viable models avoiding all these bounds. In the end, we review methods to test these models and suggest approaches to break the degeneracies in deriving neutrino mass parameters caused by NSI.  
  Address [Farzan, Yasaman] Inst Res Fundamental Sci, Sch Phys, Tehran, Iran, Email: mariam@ific.uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Research Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000426198100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3502  
Permanent link to this record
 

 
Author (up) Forero, D.V.; Giunti, C.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Nonunitary neutrino mixing in short and long-baseline experiments Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue 7 Pages 075030 - 11pp  
  Keywords  
  Abstract Nonunitary neutrino mixing in the light neutrino sector is a direct consequence of type-I seesaw neutrino mass models. In these models, light neutrino mixing is described by a submatrix of the full lepton mixing matrix and, then, it is not unitary in general. In consequence, neutrino oscillations are characterized by additional parameters, including new sources of CP violation. Here we perform a combined analysis of short and long-baseline neutrino oscillation data in this extended mixing scenario. We did not find a significant deviation from unitary mixing, and the complementary data sets have been used to constrain the nonunitarity parameters. We have also found that the T2K and NOvA tension in the determination of the Dirac CP-phase is not alleviated in the context of nonunitary neutrino mixing.  
  Address [Forero, D. V.] Univ Medellin, Carrera 87 N 30-65, Medellin, Colombia, Email: dvanegas@udem.edu.co;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000753716600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5121  
Permanent link to this record
 

 
Author (up) Forero, D.V.; Morisi, S.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 142 - 18pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract Within low-scale seesaw mechanisms, such as the inverse and linear seesaw, one expects (i) potentially large lepton flavor violation (LFV) and (ii) sizeable non-standard neutrino interactions (NSI). We consider the interplay between the magnitude of non-unitarity effects in the lepton mixing matrix, and the constraints that follow from LFV searches in the laboratory. We find that NSI parameters can be sizeable, up to percent level in some cases, while LFV rates, such as that for μ-> e gamma, lie within current limits, including the recent one set by the MEG collaboration. As a result the upcoming long baseline neutrino experiments offer a window of opportunity for complementary LFV and weak universality tests.  
  Address [Forero, DV; Morisi, S; Tortola, M; Valle, JWF] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp,Edificio Inst Paterna, E-46071 Valencia, Spain, Email: dvanegas@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296086700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 817  
Permanent link to this record
 

 
Author (up) Forero, D.V.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Neutrino oscillations refitted Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 9 Pages 093006 - 10pp  
  Keywords  
  Abstract Here, we update our previous global fit of neutrino oscillations by including the recent results that have appeared since the Neutrino 2012 conference. These include the measurements of reactor antineutrino disappearance reported by Daya Bay and RENO, together with latest T2K and MINOS data including both disappearance and appearance channels. We also include the revised results from the third solar phase of Super-Kamiokande, SK-III, as well as new solar results from the fourth phase of Super-Kamiokande, SK-IV. We find that the preferred global determination of the atmospheric angle theta(23) is consistent with maximal mixing. We also determine the impact of the new data upon all the other neutrino oscillation parameters with an emphasis on the increasing sensitivity to the CP phase, thanks to the interplay between accelerator and reactor data. In the Appendix, we present the updated results obtained after the inclusion of new reactor data presented at the Neutrino 2014 conference. We discuss their impact on the global neutrino analysis.  
  Address [Forero, D. V.; Tortola, M.; Valle, J. W. F.] Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, E-46980 Valencia, Spain, Email: dvanegas@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345534800001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2014  
Permanent link to this record
 

 
Author (up) Forero, D.V.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Global status of neutrino oscillation parameters after Neutrino-2012 Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 7 Pages 073012 - 8pp  
  Keywords  
  Abstract Here we update the global fit of neutrino oscillations in Refs. [T. Schwetz, M. Tortola, and J. W. F. Valle, New J. Phys. 13, 063004 (2011); T. Schwetz, M. Tortola, and J. W. F. Valle, New J. Phys. 13, 109401 (2011)] including the recent measurements of reactor antineutrino disappearance reported by the Double Chooz, Daya Bay, and RENO experiments, together with latest MINOS and T2K appearance and disappearance results, as presented at the Neutrino-2012 conference. We find that the preferred global fit value of theta(13) is quite large: sin(2)theta(13) similar or equal to 0.025 for normal and inverted neutrino mass ordering, with theta(13) = 0 now excluded at more than 10 sigma. The impact of the new theta(13) measurements over the other neutrino oscillation parameters is discussed as well as the role of the new long-baseline neutrino data and the atmospheric neutrino analysis in the determination of a non-maximal atmospheric angle theta(23).  
  Address [Forero, D. V.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: dvanegas@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000309999100003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1193  
Permanent link to this record
 

 
Author (up) Garces, E.A.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Low-energy neutrino-electron scattering as a standard model probe: The potential of LENA as case study Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 7 Pages 073006 - 6pp  
  Keywords  
  Abstract Several proposals for studying neutrinos with large detectors are currently under discussion. We suggest that they could provide a precise measurement of the electroweak mixing angle as well as a probe for new physics, such as nonstandard neutrino interactions, and the electroweak gauge structure. We illustrate this explicitly for the case of the LENA proposal, either with an artificial radioactive source or by using the solar neutrino flux.  
  Address [Garces, E. A.; Miranda, O. G.] IPN, Dept Fis, Ctr Invest & Estudios Avanzados, Mexico City 07000, DF, Mexico, Email: egarces@fis.cinvestav.mx  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000302405900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 975  
Permanent link to this record
 

 
Author (up) Gariazzo, S.; Archidiacono, M.; de Salas, P.F.; Mena, O.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Neutrino masses and their ordering: global data, priors and models Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 011 - 22pp  
  Keywords neutrino masses from cosmology; neutrino properties; cosmological parameters from CMBR; double beta decay  
  Abstract We present a full Bayesian analysis of the combination of current neutrino oscillation, neutrinoless double beta decay and Cosmic Microwave Background observations. Our major goal is to carefully investigate the possibility to single out one neutrino mass ordering, namely Normal Ordering or Inverted Ordering, with current data. Two possible parametrizations (three neutrino masses versus the lightest neutrino mass plus the two oscillation mass splittings) and priors (linear versus logarithmic) are exhaustively examined. We find that the preference for NO is only driven by neutrino oscillation data. Moreover, the values of the Bayes factor indicate that the evidence for NO is strong only when the scan is performed over the three neutrino masses with logarithmic priors; for every other combination of parameterization and prior, the preference for NO is only weak. As a by-product of our Bayesian analyses, we are able to (a) compare the Bayesian bounds on the neutrino mixing parameters to those obtained by means of frequentist approaches, finding a very good agreement; (b) determine that the lightest neutrino mass plus the two mass splittings parametrization, motivated by the physical observables, is strongly preferred over the three neutrino mass eigenstates scan and (c) find that logarithmic priors guarantee a weakly-to-moderately more efficient sampling of the parameter space. These results establish the optimal strategy to successfully explore the neutrino parameter space, based on the use of the oscillation mass splittings and a logarithmic prior on the lightest neutrino mass, when combining neutrino oscillation data with cosmology and neutrinoless double beta decay. We also show that the limits on the total neutrino mass Sigma m(nu) can change dramatically when moving from one prior to the other. These results have profound implications for future studies on the neutrino mass ordering, as they crucially state the need for self-consistent analyses which explore the best parametrization and priors, without combining results that involve different assumptions.  
  Address [Gariazzo, S.; de Salas, P. F.; Mena, O.; Ternes, C. A.; Tortola, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: gariazzo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000445497200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3736  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva