|   | 
Details
   web
Records
Author (up) Blanco, A.; Belver, D.; Cabanelas, P.; Diaz, J.; Fonte, P.; Garzon, J.A.; Gil, A.; Gonzalez-Diaz, D.; Koenig, W.; Kolb, B.; Lopes, L.; Palka, M.; Pereira, A.; Traxler, M.; Zumbruch, P.
Title RPC HADES-TOF wall cosmic ray test performance Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 661 Issue Pages S114-S117
Keywords Gaseous detectors; Timing; TOF; RPC; HADES
Abstract In this work we present results concerning the cosmic ray test, prior to the final installation and commissioning of the new Resistive Plate Chamber (RPC) Time of Flight (TOF) wall for the High-Acceptance DiElectron Spectrometer (HADES) at GSI. The TOF wall is composed of six equal sectors, each one constituted by 186 individual 4-gaps glass-aluminium shielded RPC cells distributed in six columns and 31 rows in two partially overlapping layers, covering an area of 1.26 m(2). All sectors were tested with the final Front End Electronic (FEE) and Data AcQuisition system (DAQ) together with Low Voltage (LV) and High Voltage (HV) systems. Results confirm a very uniform average system time resolution of 77 ps sigma together with an average multi-hit time resolution of 83 ps. Crosstalk levels below 1% (in average), moderate timing tails along with an average longitudinal position resolution of 8.4 mm sigma are also confirmed.
Address [Blanco, A.; Fonte, P.; Lopes, L.; Pereira, A.] LIP, Lab Instrumentacao & Fis Expt Particulas, Coimbra, Portugal, Email: alberto@coimbra.lip.pt
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311568900029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1285
Permanent link to this record
 

 
Author (up) Bolle, E.; Casella, C.; Chesi, E.; De Leo, R.; Dissertori, G.; Fanti, V.; Gillam, J.E.; Heller, M.; Joram, C.; Lustermann, W.; Nappi, E.; Oliver, J.F.; Pauss, F.; Rafecas, M.; Rudge, A.; Ruotsalainen, U.; Schinzel, D.; Schneider, T.; Seguinot, J.; Solevi, P.; Stapnes, S.; Tuna, U.; Weilhammer, P.
Title AX-PET: A novel PET concept with G-APD readout Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 695 Issue Pages 129-134
Keywords PET; Axial geometry; Geiger-mode Avalanche Photo Diodes (G-APD); SiPM
Abstract The AX-PET collaboration has developed a novel concept for high resolution PET imaging to overcome some of the performance limitations of classical PET cameras, in particular the compromise between spatial resolution and sensitivity introduced by the parallax error. The detector consists of an arrangement of long LYSO scintillating crystals axially oriented around the field of view together with arrays of wave length shifter strips orthogonal to the crystals. This matrix allows a precise 3D measurement of the photon interaction point. This is valid both for photoelectric absorption at 511 key and for Compton scattering down to deposited energies of about 100 keV. Crystals and WLS strips are individually read out using Geiger-mode Avalanche Photo Diodes (G-APDs). The sensitivity of such a detector can be adjusted by changing the number of layers and the resolution is defined by the crystal and strip dimensions. Two AX-PET modules were built and fully characterized in dedicated test set-ups at CERN, with point-like Na-22 sources. Their performance in terms of energy (Renew approximate to 11.8% (FWMH) at 511 key) and spatial resolution was assessed (sigma(axial) approximate to 0.65 mm), both individually and for the two modules in coincidence. Test campaigns at ETH Zurich and at the company AAA allowed the tomographic reconstructions of more complex phantoms validating the 3D reconstruction algorithms. The concept of the AX-PET modules will be presented together with some characterization results. We describe a count rate model which allows to optimize the planing of the tomographic scans.
Address [Heller, M.; Joram, C.; Schneider, T.; Seguinot, J.] CERN, PH Dept, CH-1211 Geneva, Switzerland, Email: Matthieu.Heller@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311469900026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1236
Permanent link to this record
 

 
Author (up) BRIKEN Collaboration (Tolosa-Delgado, A. et al); Agramunt, J.; Tain, J.L.; Algora, A.; Domingo-Pardo, C.; Morales, A.I.; Rubio, B.
Title Commissioning of the BRIKEN detector for the measurement of very exotic beta-delayed neutron emitters Type Journal Article
Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 925 Issue Pages 133-147
Keywords Beta-delayed neutrons; Neutron and beta counters; Analysis methodology; Background correction
Abstract A new detection system has been installed at the RIKEN Nishina Center (Japan) to investigate decay properties of very neutron-rich nuclei. The setup consists of three main parts: a moderated neutron counter, a detection system sensitive to the implantation and decay of radioactive ions, and gamma-ray detectors. We describe here the setup, the commissioning experiment and some selected results demonstrating its performance for the measurement of half-lives and beta-delayed neutron emission probabilities. The methodology followed in the analysis of the data is described in detail. Particular emphasis is placed on the correction of the accidental neutron background.
Address [Tolosa-Delgado, A.; Agramunt, J.; Tain, J. L.; Algora, A.; Domingo-Pardo, C.; Morales, A., I; Rubio, B.] CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain, Email: tain@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000460539400018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3939
Permanent link to this record
 

 
Author (up) Brook, N.H.; Castillo Garcia, L.; Conneely, T.M.; Cussans, D.; van Dijk, M.W.U.; Fohl, K.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Hancock, T.H.; Harnew, N.; Lapington, J.; Milnes, J.; Piedigrossi, D.; Rademacker, J.; Ros Garcia, A.
Title Testbeam studies of a TORCH prototype detector Type Journal Article
Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 908 Issue Pages 256-268
Keywords Cherenkov radiation; Particle identification; TORCH; MCP-PMT
Abstract TORCH is a novel time-of-flight detector that has been developed to provide charged-particle identification between 2 and 10 GeV/c momentum. TORCH combines arrival times from multiple Cherenkov photons produced within a 10 mm-thick quartz radiator plate, to achieve a 15 ps time-of-flight resolution per incident particle. A customised Micro-Channel Plate photomultiplier tube (MCP-PMT) and associated readout system utilises an innovative charge-sharing technique between adjacent pixels to obtain the necessary 70 ps time resolution of each Cherenkov photon. A five-year R&D programme has been undertaken, culminating in the construction of a small-scale prototype TORCH module. In testbeams at CERN, this prototype operated successfully with customised electronics and readout system. A full analysis chain has been developed to reconstruct the data and to calibrate the detector. Results are compared to those using a commercial Planacon MCP-PMT, and single photon resolutions approaching 80 ps have been achieved. The photon counting efficiency was found to be in reasonable agreement with a GEANT4 Monte Carlo simulation of the detector. The small-scale demonstrator is a precursor to a full-scale TORCH module (with a radiator plate of 660 x 1250 x 10 mm(3)), which is currently under construction.
Address [Brook, N. H.; Cussans, D.; Garcia, A. Ros] Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England, Email: mvandijk@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000446864600033 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3760
Permanent link to this record
 

 
Author (up) Cabanelas, P. et al; Nacher, E.
Title Performance recovery of long CsI(Tl) scintillator crystals with APD-based readout Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 965 Issue Pages 163845 - 6pp
Keywords CsI(Tl) scintillator crystals; Energy resolution; Non-uniformity light output; Optical Coupling; Avalanche Photo-Diodes
Abstract CALIFA is the high efficiency and energy resolution calorimeter for the (RB)-B-3 experiment at FAIR, intended for detecting high energy light charged particles and gamma rays in scattering experiments, and is being commissioned during the Phase-0 experiments at FAIR, between 2018 and 2020. It surrounds the reaction target in a segmented configuration with 2432 detection units made of long CsI(Tl) finger-shaped scintillator crystals. CALIFA has a 10 year intended operational lifetime as the (RB)-B-3 calorimeter, necessitating measures to be taken to ensure enduring performance. In this paper we present a systematic study of two groups of 6 different detection units of the CALIFA detector after more than four years of operation. The energy resolution and light output yield are evaluated under different conditions. Tests cover the aging of the first detector units assembled and investigates recovery procedures for degraded detection units. A possible reason for the observed degradation is given, pointing to the crystal-APD coupling.
Address [Cabanelas, P.; Gonzalez, D.; Alvarez-Pol, H.; Boillos, J. M.; Cortina, D.; Feijoo, M.; Galiana, E.; Pietras, B.; Rodriguez-Sanchez, J. L.] Univ Santiago Compostela, Inst Galego Fis Altas Enerxias, E-15782 Santiago De Compostela, Spain, Email: pablo.cabanelas@usc.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000524338400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4363
Permanent link to this record