toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author LAGUNA-LBNO Collaboration (Agarwalla, S.K., et al); Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Sorel, M. url  doi
openurl 
  Title The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 094 - 38pp  
  Keywords Oscillation; Neutrino Detectors and Telescopes; CP violation  
  Abstract The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a highpressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/E behaviour, and distinguishing effects arising from delta(CP) and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on the knowledge of oscillation parameter priors and systematic uncertainties. The impact of each systematic error and the precision of oscillation prior is shown. We demonstrate that the first stage of LBNO can determine unambiguously the MH to > 5 sigma C.L. over the whole phase space. We show that the statistical treatment of the experiment is of very high importance, resulting in the conclusion that LBNO has similar to 100% probability to determine the MH in at most 4-5 years of running. Since the knowledge of MH is indispensable to extract delta(CP) from the data, the first LBNO phase can convincingly give evidence for CPV on the 3 sigma C.L. using today's knowledge on oscillation parameters and realistic assumptions on the systematic uncertainties.  
  Address [Banerjee, D.; Bay, F.; Cantini, C.; Crivelli, P.; Di Luise, S.; Epprecht, L.; Gendotti, A.; Horikawa, S.; Murphy, S.; Nguyen, K.; Nikolics, K.; Periale, L.; Resnati, F.; Rubbia, A.; Sergiampietri, F.; Sgalaberna, D.; Viant, T.; Wu, S.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland, Email: andre.rubbia@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000337086700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1821  
Permanent link to this record
 

 
Author Muñoz, V.; Takhistov, V.; Witte, S.J.; Fuller, G.M. url  doi
openurl 
  Title Exploring the origin of supermassive black holes with coherent neutrino scattering Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 020 - 16pp  
  Keywords dark matter detectors; massive stars; neutrino astronomy; neutrino detectors  
  Abstract Collapsing supermassive stars (M greater than or similar to 3 x 10(4) M-circle dot) at high redshifts can naturally provide seeds and explain the origin of the supermassive black holes observed in the centers of nearly all galaxies. During the collapse of supermassive stars, a burst of non-thermal neutrinos is generated with a luminosity that could greatly exceed that of a conventional core collapse supernova explosion. In this work, we investigate the extent to which the neutrinos produced in these explosions can be observed via coherent elastic neutrino-nucleus scattering (CEvNS). Large scale direct dark matter detection experiments provide particularly favorable targets. We find that upcoming O(100) tonne-scale experiments will be sensitive to the collapse of individual supermassive stars at distances as large as O(10) Mpc.  
  Address [Munoz, Victor; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: victor.manuel.munoz@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000765985200009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5159  
Permanent link to this record
 

 
Author PTOLEMY Collaboration (Betti, M.G. et al); Gariazzo, S.; Pastor, S. url  doi
openurl 
  Title Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 047 - 31pp  
  Keywords cosmological neutrinos; neutrino detectors; particle physics – cosmology connection; physics of the early universe  
  Abstract The PTOLEMY project aims to develop a scalable design for a Cosmic Neutrino Background (CNB) detector, the first of its kind and the only one conceived that can look directly at the image of the Universe encoded in neutrino background produced in the first second after the Big Bang. The scope of the work for the next three years is to complete the conceptual design of this detector and to validate with direct measurements that the non-neutrino backgrounds are below the expected cosmological signal. In this paper we discuss in details the theoretical aspects of the experiment and its physics goals. In particular, we mainly address three issues. First we discuss the sensitivity of PTOLEMY to the standard neutrino mass scale. We then study the perspectives of the experiment to detect the CNB via neutrino capture on tritium as a function of the neutrino mass scale and the energy resolution of the apparatus. Finally, we consider an extra sterile neutrino with mass in the eV range, coupled to the active states via oscillations, which has been advocated in view of neutrino oscillation anomalies. This extra state would contribute to the tritium decay spectrum, and its properties, mass and mixing angle, could be studied by analyzing the features in the beta decay electron spectrum.  
  Address [Betti, M. G.; Cavoto, G.; Mancini-Terracciano, C.; Mariani, C.; Polosa, A. D.; Rago, I] Univ Roma La Sapienza, Rome, Italy, Email: pabferde@gmail.com;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000478735300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4097  
Permanent link to this record
 

 
Author Rebel, B.; Hall, C.; Bernard, E.; Faham, C.H.; Ito, T.M.; Lundberg, B.; Messina, M.; Monrabal, F.; Pereverzev, S.P.; Resnati, F.; Rowson, P.C.; Soderberg, M.; Strauss, T.; Tomas, A.; Va'vra, J.; Wang, H. url  doi
openurl 
  Title High voltage in noble liquids for high energy physics Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages T08004 - 57pp  
  Keywords Noble liquid detectors (scintillation, ionization, double-phase); Neutrino detectors; Neutron detectors (cold, thermal, fast neutrons); Dark Matter detectors (WIMPs, axions, etc.)  
  Abstract A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.  
  Address [Rebel, B.; Soderberg, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA, Email: rebel@fnal.gov  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341927600043 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1947  
Permanent link to this record
 

 
Author Sorel, M. url  doi
openurl 
  Title Expected performance of an ideal liquid argon neutrino detector with enhanced sensitivity to scintillation light Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P10002 - 25pp  
  Keywords Noble liquid detectors (scintillation, ionization, double-phase); Neutrino detectors; Calorimeters; Time projection chambers  
  Abstract Scintillation light is used in liquid argon (LAr) neutrino detectors to provide a trigger signal, veto information against cosmic rays, and absolute event timing. In this work, we discuss additional opportunities offered by detectors with enhanced sensitivity to scintillation light, that is with light collection efficiencies of about 10(-3). We focus on two key detector performance indicators for neutrino oscillation physics: calorimetric neutrino energy reconstruction and neutrino/antineutrino separation in a non-magnetized detector. Our results are based on detailed simulations, with neutrino interactions modelled according to the GENIE event generator, while the charge and light responses of a large LAr ideal detector are described by the Geant4 and NEST simulation tools. A neutrino energy resolution as good as 3.3% RMS for 4 GeV electron neutrino charged-current interactions can in principle be obtained in a large detector of this type, by using both charge and light information. By exploiting muon capture in argon and scintillation light information to veto muon decay electrons, we also obtain muon neutrino identification efficiencies of about 50%, and muon antineutrino misidentification rates at the few percent level, for few-GeV neutrino interactions that are fully contained. We argue that the construction of large LAr detectors with sufficiently high light collection efficiencies is in principle possible.  
  Address [Sorel, M.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: sorel@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345858500045 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2056  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva