toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Barenboim, G.; Park, W.I. url  doi
openurl 
  Title Peccei-Quinn field for inflation, baryogenesis, dark matter, and much more Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 756 Issue Pages 317-322  
  Keywords  
  Abstract We propose a scenario of brane cosmology in which the Peccei-Quinn field plays the role of the inflaton and solves simultaneously many cosmological and phenomenological issues such as the generation of a heavy Majorana mass for the right-handed neutrinos needed for seesaw mechanism, MSSM mu-parameter, the right amount of baryon number asymmetry and dark matter relic density at the present universe, together with an axion solution to the strong CP problem without the domain wall obstacle. Interestingly, the scales of the soft SUSY-breaking mass parameter and those of the breaking of U(1)(PQ) symmetry are lower bounded at O(10) TeV and O(10(11)) GeV, respectively.  
  Address [Park, Wan-Il] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373569200048 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2637  
Permanent link to this record
 

 
Author (up) Barenboim, G.; Park, W.I. url  doi
openurl 
  Title Gravitational waves from first order phase transitions as a probe of an early matter domination era and its inverse problem Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 759 Issue Pages 430-438  
  Keywords  
  Abstract We investigate the gravitational wave background from a first order phase transition in a matter-dominated universe, and show that it has a unique feature from which important information about the properties of the phase transition and thermal history of the universe can be easily extracted. Also, we discuss the inverse problem of such a gravitational wave background in view of the degeneracy among macroscopic parameters governing the signal.  
  Address [Park, Wan-Il] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000380409200057 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2883  
Permanent link to this record
 

 
Author (up) Barenboim, G.; Park, W.I. url  doi
openurl 
  Title Spiral inflation with Coleman-Weinberg potential Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 91 Issue 6 Pages 063511 - 5pp  
  Keywords  
  Abstract We apply the idea of spiral inflation to the Coleman-Weinberg potential and show that inflation matching our observations well is allowed for a symmetry-breaking scale ranging from an intermediate scale to a grand unified theory (GUT) scale even if the quartic coupling lambda is of O(0.1). The tensor-to-scalar ratio can be of O(0.01) in the case of GUT-scale symmetry breaking.  
  Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352025900003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2183  
Permanent link to this record
 

 
Author (up) Barenboim, G.; Park, W.I. url  doi
openurl 
  Title Spiral inflation Type Journal Article
  Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 741 Issue Pages 252-255  
  Keywords  
  Abstract We propose a novel scenario of primordial inflation in which the inflaton goes through a spiral motion starting from around the top of a symmetry breaking potential. We show that, even though inflation takes place for a field value much smaller than Planck scale, it is possible to obtain relatively large tensor-to-scalar ratio (r similar to 0.1) without fine tuning. The inflationary observables perfectly match Planck data.  
  Address [Barenboim, Gabriela; Park, Wan-Il] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000348290800039 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2109  
Permanent link to this record
 

 
Author (up) Barenboim, G.; Park, W.I.; Kinney, W.H. url  doi
openurl 
  Title Eternal hilltop inflation Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 030 - 15pp  
  Keywords inflation; initial conditions and eternal universe; quantum cosmology  
  Abstract We consider eternal inflation in hilltop-type inflation models, favored by current data, in which the scalar field in inflation rolls off of a local maximum of the potential. Unlike chaotic or plateau-type inflation models, in hilltop inflation the region of field space which supports eternal inflation is finite, and the expansion rate H-EI during eternal inflation is almost exactly the same as the expansion rate H-* during slow roll inflation. Therefore, in any given Hubble volume, there is a finite and calculable expectation value for the lifetime of the “eternal” inflation phase, during which quantum flucutations dominate over classical field evolution. We show that despite this, inflation in hilltop models is nonetheless eternal in the sense that the volume of the spacetime at any finite time is exponentially dominated by regions which continue to inflate. This is true regardless of the energy scale of inflation, and eternal inflation is supported for inflation at arbitrarily low energy scale.  
  Address [Barenboim, Gabriela; Park, Wan-Il] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000389860500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2903  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva