toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Ramirez, H.; Passaglia, S.; Motohashi, H.; Hu, W.; Mena, O. url  doi
openurl 
  Title Reconciling tensor and scalar observables in G-inflation Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 039 - 20pp  
  Keywords inflation; cosmological parameters from CMBR  
  Abstract The simple m(2)phi(2) potential as an inflationary model is coming under increasing tension with limits on the tensor-to-scalar ratio r and measurements of the scalar spectral index n(s). Cubic Galileon interactions in the context of the Horndeski action can potentially reconcile the observables. However, we show that this cannot be achieved with only a constant Galileon mass scale because the interactions turn off too slowly, leading also to gradient instabilities after inflation ends. Allowing for a more rapid transition can reconcile the observables but moderately breaks the slow-roll approximation leading to a relatively large and negative running of the tilt alpha(s) that can be of order n(s) – 1. We show that the observables on CMB and large scale structure scales can be predicted accurately using the optimized slow-roll approach instead of the traditional slow-roll expansion. Upper limits on vertical bar alpha(s)vertical bar place a lower bound of r greater than or similar to 0.005 and, conversely, a given r places a lower bound on vertical bar alpha(s)vertical bar, both of which are potentially observable with next generation CMB and large scale structure surveys.  
  Address [Ramirez, Hector] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: hector.ramirez@uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000429895200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3557  
Permanent link to this record
 

 
Author (up) Reid, B.A. et al; de Putter, R. url  doi
openurl 
  Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering Type Journal Article
  Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 426 Issue 4 Pages 2719-2737  
  Keywords galaxies: haloes; galaxies: statistics; cosmological parameters; large-scale structure of Universe  
  Abstract We analyse the anisotropic clustering of massive galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) sample, which consists of 264-283 galaxies in the redshift range 0.43 < z < 0.7 spanning 3275 deg(2). Both peculiar velocities and errors in the assumed redshiftdistance relation (AlcockPaczynski effect) generate correlations between clustering amplitude and orientation with respect to the line of sight. Together with the sharp baryon acoustic oscillation (BAO) standard ruler, our measurements of the broad-band shape of the monopole and quadrupole correlation functions simultaneously constrain the comoving angular diameter distance (2190 +/- 61 Mpc) to z = 0.57, the Hubble expansion rate at z = 0.57 (92.4 +/- 4.5 km s(-1) Mpc(-1)) and the growth rate of structure at that same redshift (d(sigma 8)/d ln a = 0.43 +/- 0.069). Our analysis provides the best current direct determination of both DA and H in galaxy clustering data using this technique. If we further assume a cold dark matter expansion history, our growth constraint tightens to d(sigma 8)/d ln a = 0.415 +/- 0.034. In combination with the cosmic microwave background, our measurements of D-A,H and d(sigma 8)/d ln a all separately require dark energy at z > 0.57, and when combined imply Omega(A) = 0.74 +/- 0.016, independent of the Universe's evolution at z < 0.57. All of these constraints assume scale-independent linear growth, and assume general relativity to compute both O(10 per cent) non-linear model corrections and our errors. In our companion paper, Samushia et al., we explore further cosmological implications of these observations.  
  Address [Reid, Beth A.; White, Martin; Bailey, Stephen; Roe, N. A.; Ross, Nicholas P.; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA, Email: beth.ann.reid@gmail.com  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310064400008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1192  
Permanent link to this record
 

 
Author (up) Reid, B.A.; Verde, L.; Jimenez, R.; Mena, O. url  doi
openurl 
  Title Robust neutrino constraints by combining low redshift observations with the CMB Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 003 - 21pp  
  Keywords cluster counts; cosmological parameters from LSS; neutrino masses from cosmology; cosmological parameters from CMBR  
  Abstract We illustrate how recently improved low-redshift cosmological measurements can tighten constraints on neutrino properties. In particular we examine the impact of the assumed cosmological model on the constraints. We first consider the new HST H-0 = 74.2 +/- 3.6 measurement by Riess et al. (2009) and the sigma(8)(Omega(m)/0.25)(0.41) = 0.832 +/- 0.033 constraint from Rozo et al. (2009) derived from the SDSS maxBCG Cluster Catalog. In a ACDM model and when combined with WMAP5 constraints, these low-redshift measurements constrain Sigma m(v) < 0.4 eV at the 95% confidence level. This bound does not relax when allowing for the running of the spectral index or for primordial tensor perturbations. When adding also Supernovae and BAO constraints, we obtain a 95% upper limit of Sigma m(v) < 0.3eV. We test the sensitivity of the neutrino mass constraint to the assumed expansion history by both allowing a dark energy equation of state parameter w not equal -1 and by studying a model with coupling between dark energy and dark matter, which allows for variation in w, Omega(k), and dark coupling strength xi. When combining CMB, H-0 and the SDSS LRG halo power spectrum from Reid et al. 2009, we find that in this very general model, Sigma m(v) < 0.51 eV with 95% confidence. If we allow the number of relativistic species N-rel to vary in a ACDM model with Sigma m(v) = 0, we find N-rel = 3.76(-0.68)(+0.63)(+1.38 -1.21) for the 68% and 95% confidence intervals. We also report prior-independent constraints, which are in excellent agreement with the Bayesian constraints.  
  Address [Reid, Beth A.] Univ Barcelona, Inst Sci Cosmos ICC, E-08028 Barcelona, Spain, Email: beth.ann.reid@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000273314600008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 511  
Permanent link to this record
 

 
Author (up) Sanchis-Lozano, M.A.; Melia, F.; Lopez-Corredoira, M.; Sanchis-Gual, N. url  doi
openurl 
  Title Missing large-angle correlations versus even-odd point-parity imbalance in the cosmic microwave background Type Journal Article
  Year 2022 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume 660 Issue Pages A121 - 10pp  
  Keywords cosmological parameters; cosmic background radiation; cosmology: observations; cosmology: theory; inflation; large-scale structure of Universe  
  Abstract Context. The existence of a maximum correlation angle (theta(max) & 60 greater than or similar to degrees) in the two-point angular temperature correlations of cosmic microwave background (CMB) radiation, measured by WMAP and Planck, stands in sharp contrast to the prediction of standard inflationary cosmology, in which the correlations should extend across the full sky (i.e., 180 degrees). The introduction of a hard lower cuto ff (k(min)) in the primordial power spectrum, however, leads naturally to the existence of theta(max). Among other cosmological anomalies detected in these data, an apparent dominance of odd-over-even parity multipoles has been seen in the angular power spectrum of the CMB. This feature, however, may simply be due to observational contamination in certain regions of the sky. Aims. In attempting to provide a more detailed assessment of whether this odd-over-even asymmetry is intrinsic to the CMB, we therefore proceed in this paper, first, to examine whether this odd-even parity imbalance also manifests itself in the angular correlation function and, second, to examine in detail the interplay between the presence of theta(max) and this observed anomaly. Methods. We employed several parity statistics and recalculated the angular correlation function for di fferent values of the cuto ff kmin in order to optimize the fit to the di fferent Planck 2018 data. Results. We find a phenomenological connection between these features in the data, concluding that both must be considered together in order to optimize the theoretical fit to the Planck 2018 data. Conclusions. This outcome is independent of whether the parity imbalance is intrinsic to the CMB, but if it is, the odd-over-even asymmetry would clearly point to the emergence of new physics.  
  Address [Sanchis-Lozano, M-A] Ctr Mixto Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Dr Moliner 50, Burjassot, Spain, Email: Miguel.Angel.Sanchis@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Edp Sciences S A Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000786712000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5211  
Permanent link to this record
 

 
Author (up) Schiavone, T.; Montani, G.; Bombacigno, F. url  doi
openurl 
  Title f(R) gravity in the Jordan frame as a paradigm for the Hubble tension Type Journal Article
  Year 2023 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 522 Issue 1 Pages L72-L77  
  Keywords supernovae: general; galaxies: distances and redshifts; cosmological parameters; dark energy; cosmology: theory  
  Abstract We analyse the f(R) gravity in the so-called Jordan frame, as implemented to the isotropic Universe dynamics. The goal of the present study is to show that according to recent data analyses of the supernovae Ia Pantheon sample, it is possible to account for an effective redshift dependence of the Hubble constant. This is achieved via the dynamics of a non-minimally coupled scalar field, as it emerges in the f(R) gravity. We face the question both from an analytical and purely numerical point of view, following the same technical paradigm. We arrive to establish that the expected decay of the Hubble constant with the redshift z is ensured by a form of the scalar field potential, which remains essentially constant for z less than or similar to 0.3, independently if this request is made a priori, as in the analytical approach, or obtained a posteriori, when the numerical procedure is addressed. Thus, we demonstrate that an f(R) dark energy model is able to account for an apparent variation of the Hubble constant due to the rescaling of the Einstein constant by the f(R) scalar mode.  
  Address [Schiavone, Tiziano] Univ Pisa, Dept Phys Fermi, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy, Email: tschiavone@fc.ul.pt  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001066034100015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5672  
Permanent link to this record
 

 
Author (up) Seo, H.J. et al; de Putter, R. url  doi
openurl 
  Title Acoustic scale from the angular power spectra of SDSS-III DR8 photometric luminous galaxies Type Journal Article
  Year 2012 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 761 Issue 1 Pages 13 - 16pp  
  Keywords distance scale; cosmological parameters; cosmology: observations; large-scale structure of universe  
  Abstract We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over similar to 10,000 deg(2) between 0.45 < z < 0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, to derive the location of Baryon acoustic oscillations (BAOs) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale D-A(z)/r(s) = 9.212(-0.404)(+0.416) at z = 0.54, and therefore D-A(z) = 1411 +/- 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D-A(z) is 1.4 sigma higher than what is expected for the concordance Lambda CDM, in accordance to the trend of other spectroscopic BAO measurements for z greater than or similar to 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum.  
  Address [Seo, Hee-Jong] Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311748800013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1264  
Permanent link to this record
 

 
Author (up) Stadler, J.; Boehm, C.; Mena, O. url  doi
openurl 
  Title Is it mixed dark matter or neutrino masses? Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 01 Issue 1 Pages 039 - 18pp  
  Keywords cluster counts; cosmological parameters from CMBR; cosmological parameters from LSS; neutrino masses from cosmology  
  Abstract In this paper, we explore a scenario where the dark matter is a mixture of interacting and non interacting species. Assuming dark matter-photon interactions for the interacting species, we find that the suppression of the matter power spectrum in this scenario can mimic that expected in the case of massive neutrinos. Our numerical studies include present limits from Planck Cosmic Microwave Background data, which render the strength of the dark matter photon interaction unconstrained when the fraction of interacting dark matter is small. Despite the large entangling between mixed dark matter and neutrino masses, we show that future measurements from the Dark Energy Instrument (DESI) could help in establishing the dark matter and the neutrino properties simultaneously, provided that the interaction rate is very close to its current limits and the fraction of interacting dark matter is at least of O (10%). However, for that region of parameter space where a small fraction of interacting DM coincides with a comparatively large interaction rate, our analysis highlights a considerable degeneracy between the mixed dark matter parameters and the neutrino mass scale.  
  Address [Stadler, Julia; Boehm, Celine] Univ Durham, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England, Email: jstadler@mpe.mpg.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000528025800040 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4383  
Permanent link to this record
 

 
Author (up) Vagnozzi, S.; Di Valentino, E.; Gariazzo, S.; Melchiorri, A.; Mena, O.; Silk, J. url  doi
openurl 
  Title The galaxy power spectrum take on spatial curvature and cosmic concordance Type Journal Article
  Year 2021 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 33 Issue Pages 100851 - 17pp  
  Keywords Cosmological parameters; Spatial curvature; Cosmological tensions  
  Abstract The concordance of the ACDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements appear at face value to favour a spatially closed Universe with curvature parameter Omega(K) < 0. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point of view, using measurements of the full-shape (FS) galaxy power spectrum, P(k), from the Baryon Oscillation Spectroscopic Survey DR12 CMASS sample. By combining Planck data with FS measurements, we break the geometrical degeneracy and find Omega(K) = 0.0023 +/- 0.0028. This constrains the Universe to be spatially flat to sub-percent precision, in excellent agreement with results obtained using BAO measurements. However, as with BAO, the overall increase in the best-fit chi(2) suggests a similar level of tension between Planck and P(k) under the assumption of a curved Universe. While the debate on spatial curvature and the concordance between cosmological datasets remains open, our results provide new perspectives on the issue, highlighting the crucial role of FS measurements in the era of precision cosmology.  
  Address [Vagnozzi, Sunny] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England, Email: sunny.vagnozzi@ast.cam.ac.uk;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000704383100022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4984  
Permanent link to this record
 

 
Author (up) Vagnozzi, S.; Visinelli, L.; Mena, O.; Mota, D.F. url  doi
openurl 
  Title Do we have any hope of detecting scattering between dark energy and baryons through cosmology? Type Journal Article
  Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 493 Issue 1 Pages 1139-1152  
  Keywords cosmic background radiation; cosmological parameters; cosm logy: observations; dark energy; large-scale structure of Universe  
  Abstract We consider the possibility that dark energy and baryons might scatter off each other. The type of interaction we consider leads to a pure momentum exchange, and does not affect the background evolution of the expansion history. We parametrize this interaction in an effective way at the level of Boltzmann equations. We compute the effect of dark energy-baryon scattering on cosmological observables, focusing on the cosmic microwave background (CMB) temperature anisotropy power spectrum and the matter power spectrum. Surprisingly, we find that even huge dark energy-baryon cross-sections sigma(xb) similar to O(b), which are generically excluded by non-cosmological probes such as collider searches or precision gravity tests, only leave an insignificant imprint on the observables considered. In the case of the CMB temperature power spectrum, the only imprint consists in a sub-per cent enhancement or depletion of power (depending whether or not the dark energy equation of state lies above or below -1) at very low multipoles, which is thus swamped by cosmic variance. These effects are explained in terms of differences in how gravitational potentials decay in the presence of a dark energy-baryon scattering, which ultimately lead to an increase or decrease in the late-time integrated Sachs-Wolfe power. Even smaller related effects are imprinted on the matter power spectrum. The imprints on the CMB are not expected to be degenerate with the effects due to altering the dark energy sound speed. We conclude that, while strongly appealing, the prospects for a direct detection of dark energy through cosmology do not seem feasible when considering realistic dark energy-baryon cross-sections. As a caveat, our results hold to linear order in perturbation theory.  
  Address [Vagnozzi, Sunny] Univ Cambridge, Kat Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England, Email: sunny.vagnozzi@ast.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000518156100081 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4320  
Permanent link to this record
 

 
Author (up) Villanueva-Domingo, P.; Gariazzo, S.; Gnedin, N.Y.; Mena, O. url  doi
openurl 
  Title Was there an early reionization component in our universe? Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 024 - 17pp  
  Keywords cosmological parameters from CMBR; reionization  
  Abstract A deep understanding of the epoch of reionization is still missing in our knowledge of the universe. While future probes will allow us to test the precise evolution of the free electron fraction from redshifts between z similar or equal to 6 and z similar or equal to 20, at present one could ask what kind of reionization processes are allowed by present cosmic microwave background temperature and polarization measurements. An early contribution to reionization could imply a departure from the standard picture where star formation determines the reionization onset. By considering a broad class of possible reionization parameterizations, we find that current data do not require an early reionization component in our universe and that only one marginal class of models, based on a particular realization of reionization, may point to that. In addition, the frequentist Akaike information criterion (AIC) provides strong evidence against alternative reionization histories, favoring the most simple reionization scenario, which describes reionization by means of only one (constant) reionization optical depth tau.  
  Address [Villanueva-Domingo, Pablo; Gariazzo, Stefano; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: pablo.villanueva@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000429339200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3555  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva