|   | 
Details
   web
Records
Author (up) Albertus, C.; Hernandez, E.; Nieves, J.
Title Exclusive c -> s, d semileptonic decays of ground-state spin-1/2 and spin-3/2 doubly heavy cb baryons Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 9 Pages 094035 - 21pp
Keywords
Abstract We evaluate exclusive semileptonic decays of ground-state spin-1/2 and spin-3/2 doubly heavy cb baryons driven by a c --> s, d transition at the quark level. We check our results for the form factors against heavy quark spin symmetry constraints obtained in the limit of very large heavy quark masses and near zero recoil. Based on those constraints we make model-independent, though approximate, predictions for ratios of decay widths.
Address [Albertus, C.; Hernandez, E.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000304652600002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1043
Permanent link to this record
 

 
Author (up) Albertus, C.; Hernandez, E.; Nieves, J.
Title Exclusive c -> s, d semileptonic decays of ground-state spin-1/2 doubly charmed baryons Type Journal Article
Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 704 Issue 5 Pages 499-509
Keywords
Abstract We evaluate exclusive semileptonic decays of ground-state spin-1/2 doubly heavy charmed baryons driven by a c -> s, d transition at the quark level. Our results for the form factors are consistent with heavy quark spin symmetry constraints which are valid in the limit of an infinitely massive charm quark and near zero recoil. Only a few exclusive semileptonic decay channels have been theoretically analyzed before. For those cases we find that our results are in a reasonable agreement with previous calculations.
Address [Albertus, C.; Hernandez, E.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: gajatee@usal.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000296549200017 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 828
Permanent link to this record
 

 
Author (up) Albertus, C.; Hernandez, E.; Nieves, J.
Title Hyperfine mixing in electromagnetic decay of doubly heavy bc baryons Type Journal Article
Year 2010 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 690 Issue 3 Pages 265-271
Keywords Hyperfine mixing; Double heavy bc baryons
Abstract We investigate the role of hyperfine mixing in the electromagnetic decay of ground state doubly heavy bc baryons. As in the case of a previous calculation on b -> c semileptonic decays of doubly heavy baryons, we find large corrections to the electromagnetic decay widths due to this mixing. Contrary to the weak case just mentioned, we find here that one cannot use electromagnetic width relations obtained in the infinite heavy quark mass limit to experimentally extract information on the admixtures in a model independent way.
Address [Albertus, C.; Hernandez, E.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: gajatee@usal.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000279388800012 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 416
Permanent link to this record
 

 
Author (up) Albertus, C.; Hernandez, E.; Nieves, J.
Title Hyperfine mixing in b -> c semileptonic decay of doubly heavy baryons Type Journal Article
Year 2010 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 683 Issue 1 Pages 21-25
Keywords
Abstract We qualitatively corroborate the results of [W. Roberts, M. Pervin, Int. J. Mod. Phys. A 24 (2009) 2401] according to which hyperfine mixing greatly affects the decay widths of b -> c semileptonic decays involving doubly heavy bc baryons. However, our predictions for the decay widths of the unmixed states differ from those reported in the work of Roberts and Pervin by a factor of 2, and this discrepancy translates to the mixed case. We further show that the predictions of heavy quark spin symmetry, might be used in the future to experimentally extract information on the admixtures in the actual physical bc baryons, in a model independent manner.
Address [Hernandez, E.] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: gajatee@usal.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000274129600005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 501
Permanent link to this record
 

 
Author (up) Albiol, A.; Albiol, F.; Paredes, R.; Plasencia-Martinez, J.M.; Blanco Barrio, A.; Garcia Santos, J.M.; Tortajada, S.; Gonzalez Montano, V.M.; Rodriguez Godoy, C.E.; Fernandez Gomez, S.; Oliver-Garcia, E.; de la Iglesia Vaya, M.; Marquez Perez, F.L.; Rayo Madrid, J.I.
Title A comparison of Covid-19 early detection between convolutional neural networks and radiologists Type Journal Article
Year 2022 Publication Insights into Imaging Abbreviated Journal Insights Imaging
Volume 13 Issue 1 Pages 122 - 12pp
Keywords Deep learning; Covid-19; Radiology
Abstract Background The role of chest radiography in COVID-19 disease has changed since the beginning of the pandemic from a diagnostic tool when microbiological resources were scarce to a different one focused on detecting and monitoring COVID-19 lung involvement. Using chest radiographs, early detection of the disease is still helpful in resource-poor environments. However, the sensitivity of a chest radiograph for diagnosing COVID-19 is modest, even for expert radiologists. In this paper, the performance of a deep learning algorithm on the first clinical encounter is evaluated and compared with a group of radiologists with different years of experience. Methods The algorithm uses an ensemble of four deep convolutional networks, Ensemble4Covid, trained to detect COVID-19 on frontal chest radiographs. The algorithm was tested using images from the first clinical encounter of positive and negative cases. Its performance was compared with five radiologists on a smaller test subset of patients. The algorithm's performance was also validated using the public dataset COVIDx. Results Compared to the consensus of five radiologists, the Ensemble4Covid model achieved an AUC of 0.85, whereas the radiologists achieved an AUC of 0.71. Compared with other state-of-the-art models, the performance of a single model of our ensemble achieved nonsignificant differences in the public dataset COVIDx. Conclusion The results show that the use of images from the first clinical encounter significantly drops the detection performance of COVID-19. The performance of our Ensemble4Covid under these challenging conditions is considerably higher compared to a consensus of five radiologists. Artificial intelligence can be used for the fast diagnosis of COVID-19.
Address [Albiol, Alberto] Univ Politecn Valencia, iTeam Inst, ETSI Telecomunicac, Camino Vera S-N, Valencia 46022, Spain, Email: alalbiol@iteam.upv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1869-4101 ISBN Medium
Area Expedition Conference
Notes WOS:000832727200003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5302
Permanent link to this record