toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Archidiacono, M.; Gariazzo, S.; Giunti, C.; Hannestad, S.; Tram, T. url  doi
openurl 
  Title Sterile neutrino self-interactions: H-0 tension and short-baseline anomalies Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 029 - 20pp  
  Keywords cosmological neutrinos; cosmological parameters from CMBR; particle physics – cosmology connection; physics of the early universe  
  Abstract Sterile neutrinos with a mass in the eV range have been invoked as a possible explanation of a variety of short baseline (SBL) neutrino oscillation anomalies. However, if one considers neutrino oscillations between active and sterile neutrinos, such neutrinos would have been fully thermalised in the early universe, and would be therefore in strong conflict with cosmological bounds. In this study we first update cosmological bounds on the mass and energy density of eV-scale sterile neutrinos. We then perform an updated study of a previously proposed model in which the sterile neutrino couples to a new light pseudoscalar degree of freedom. Consistently with previous analyses, we find that the model provides a good fit to all cosmological data and allows the high value of H-0 measured in the local universe to be consistent with measurements of the cosmic microwave background. However, new high l polarisation data constrain the sterile neutrino mass to be less than approximately 1 eV in this scenario. Finally, we combine the cosmological bounds on the pseudoscalar model with a Bayesian inference analysis of SBL data and conclude that only a sterile mass in narrow ranges around 1 eV remains consistent with both cosmology and SBL data.  
  Address [Archidiacono, Maria] Univ Milan, Via G Celoria 16, I-20133 Milan, Italy, Email: maria.archidiacono@unimi.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000609105900015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4688  
Permanent link to this record
 

 
Author Arguelles, C.A.; Coloma, P.; Hernandez, P.; Muñoz, V. url  doi
openurl 
  Title Searches for atmospheric long-lived particles Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 190 - 34pp  
  Keywords Beyond Standard Model; Neutrino Physics; Solar and Atmospheric Neutrinos  
  Abstract Long-lived particles are predicted in extensions of the Standard Model that involve relatively light but very weakly interacting sectors. In this paper we consider the possibility that some of these particles are produced in atmospheric cosmic ray showers, and their decay intercepted by neutrino detectors such as IceCube or Super-Kamiokande. We present the methodology and evaluate the sensitivity of these searches in various scenarios, including extensions with heavy neutral leptons in models of massive neutrinos, models with an extra U(1) gauge symmetry, and a combination of both in a U(1)(B-L) model. Our results are shown as a function of the production rate and the lifetime of the corresponding long-lived particles.  
  Address [Arguelles, C.] MIT, Dept Phys, Cambridge, MA 02139 USA, Email: caad@mit.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000518622800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4323  
Permanent link to this record
 

 
Author Arguelles, C.A.; Kelly, K.J.; Muñoz, V.M. url  doi
openurl 
  Title Millicharged particles from the heavens: single- and multiple-scattering signatures Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 099 - 34pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract For nearly a century, studying cosmic-ray air showers has driven progress in our understanding of elementary particle physics. In this work, we revisit the production of millicharged particles in these atmospheric showers and provide new constraints for XENON1T and Super-Kamiokande and new sensitivity estimates of current and future detectors, such as JUNO. We discuss distinct search strategies, specifically studies of single-energy-deposition events, where one electron in the detector receives a relatively large energy transfer, as well as multiple-scattering events consisting of (at least) two relatively small energy depositions. We demonstrate that these atmospheric search strategies especially the multiple-scattering signature – provide significant room for improvement beyond existing searches, in a way that is complementary to anthropogenic, beam-based searches for MeV-GeV millicharged particles. Finally, we also discuss the implementation of a Monte Carlo simulation for millicharged particle detection in large-volume neutrino detectors, such as IceCube.  
  Address [Arguelles, Carlos A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: carguelles@fas.harvard.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000718091700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5038  
Permanent link to this record
 

 
Author Arguelles, C.A.; Palomares-Ruiz, S.; Schneider, A.; Wille, L.; Yuan, T.L. url  doi
openurl 
  Title Unified atmospheric neutrino passing fractions for large-scale neutrino telescopes Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 047 - 41pp  
  Keywords neutrino detectors; neutrino experiments; ultra high energy photons and neutrinos  
  Abstract The atmospheric neutrino passing fraction, or self-veto, is defined as the probability for an atmospheric neutrino not to be accompanied by a detectable muon from the same cosmic-ray air shower. Building upon previous work, we propose a redefinition of the passing fractions by unifying the treatment for muon and electron neutrinos. Several approximations have also been removed. This enables performing detailed estimations of the uncertainties in the passing fractions from several inputs: muon losses, cosmic-ray spectrum, hadronic-interaction models and atmosphere-density profiles. We also study the passing fractions under variations of the detector configuration: depth, surrounding medium and muon veto trigger probability. The calculation exhibits excellent agreement with passing fractions obtained from Monte Carlo simulations. Finally, we provide a general software framework to implement this veto technique for all large-scale neutrino observatories.  
  Address [Arguelle, Carlos A.] MIT, Dept Phys, Cambridge, MA 02139 USA, Email: caad@mit.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000439590200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3677  
Permanent link to this record
 

 
Author Arina, C.; Di Mauro, M.; Fornengo, N.; Heisig, J.; Jueid, A.; Ruiz de Austri, R. url  doi
openurl 
  Title CosmiXs: cosmic messenger spectra for indirect dark matter searches Type Journal Article
  Year 2024 Publication Journal of Cosmology And Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 035 - 41pp  
  Keywords dark matter experiments; dark matter simulations; dark matter theory  
  Abstract The energy spectra of particles produced from dark matter (DM) annihilation or decay are one of the fundamental ingredients to calculate the predicted fluxes of cosmic rays and radiation searched for in indirect DM detection. We revisit the calculation of the source spectra for annihilating and decaying DM using the VINCIA shower algorithm in PYTHIA to include QED and QCD final state radiation and diagrams for the EW corrections with massive bosons, not present in the default PYTHIA shower model. We take into account the spin information of the particles during the entire EW shower and the off -shell contributions from massive gauge bosons. Furthermore, we perform a dedicated tuning of the VINCIA and PYTHIA parameters to LEP data on the production of pions, photons, and hyperons at the Z resonance and discuss the underlying uncertainties. To enable the use of our results in DM studies, we provide the tabulated source spectra for the most relevant cosmic messenger particles, namely antiprotons, positrons, gamma rays and the three neutrino flavors, for all the fermionic and bosonic channels and DM masses between 5 GeV and 100 TeV, on github.  
  Address [Arina, Chiara] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, Chemin Cyclotron 2, B-1348 Louvain La Neuve, Belgium, Email: chiara.arina@uclouvain.be;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001195757300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6041  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva