toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Chakraborty, K.; Goswami, S.; Gupta, C.; Thakore, T. url  doi
openurl 
  Title Enhancing the hierarchy and octant sensitivity of ESS nu SB in conjunction with T2K, NO nu A and ICAL@INO Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 137 - 26pp  
  Keywords Neutrino Physics; Beyond Standard Model; CP violation  
  Abstract The main aim of the ESSSB proposal is the discovery of the leptonic CP phase (CP) with a high significance (5 sigma for 50% values of (CP)) by utilizing the physics at the second oscillation maxima of the P-e channel. It can achieve 3 sigma sensitivity to hierarchy for all values of (CP). In this work, we concentrate on the hierarchy and octant sensitivity of the ESSSB experiment. We show that combining the ESSSB experiment with the atmospheric neutrino data from the proposed India-based Neutrino Observatory (INO) experiment can result in an increased sensitivity to mass hierarchy. In addition, we also combine the results from the ongoing experiments T2K and NOa assuming their full run-time and present the combined sensitivity of ESSSB + ICAL@INO + T2K + NOA. We show that while by itself ESSSB can have up to 3 sigma hierarchy sensitivity, the combination of all the experiments can give up to 5 sigma sensitivity depending on the true hierarchy-octant combination. The octant sensitivity of ESSSB is low by itself. However the combined sensitivity of all the above experiments can give up to 3 sigma sensitivity depending on the choice of true hierarchy and octant. We discuss the various degeneracies and the synergies that lead to the enhanced sensitivity when combining different experimental data.  
  Address [Chakraborty, Kaustav; Goswami, Srubabati; Gupta, Chandan] Phys Res Lab, Div Theoret Phys, Ahmadabad 380009, Gujarat, India, Email: kaustav@prl.res.in;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000468950200011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4032  
Permanent link to this record
 

 
Author (up) de Salas, P.F.; Pastor, S.; Ternes, C.A.; Thakore, T.; Tortola, M. url  doi
openurl 
  Title Constraining the invisible neutrino decay with KM3NeT-ORCA Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 789 Issue Pages 472-479  
  Keywords Neutrino masses and mixing; Neutrino oscillations; Neutrino decay; Neutrino telescopes  
  Abstract Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile neutrino and, depending on the model, a scalar or a Majoron. We study the sensitivity of the forthcoming KM3NeT-ORCA experiment to this scenario and find that it could improve the current bounds coming from oscillation experiments, where three-neutrino oscillations have been considered, by roughly two orders of magnitude. We also study how the presence of this neutrino decay can affect the determination of the atmospheric oscillation parameters sin(2) theta(23) and Delta m(31)(2), as well as the sensitivity to the neutrino mass ordering.  
  Address [de Salas, P. F.; Pastor, S.; Ternes, C. A.; Thakore, T.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000457165400063 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3902  
Permanent link to this record
 

 
Author (up) Khatun, A.; Chatterjee, S.S.; Thakore, T.; Agarwalla, S.K. url  doi
openurl 
  Title Enhancing sensitivity to non-standard neutrino interactions at INO combining muon and hadron information Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 6 Pages 533 - 17pp  
  Keywords  
  Abstract In this paper, we explore the impact of flavor violating neutral current non-standard interaction (NSI) parameter epsilon(mu tau) in the oscillation of atmospheric neutrinos and antineutrinos separately using the 50 kt magnetized ICAL detector at INO. We find that due to non-zero epsilon(mu tau), nu(mu) -> nu(mu) and (nu) over bar (mu) -> (nu) over bar (mu) transition probabilities get modified substantially at higher energies and longer baselines, where vacuum oscillation dominates. We demonstrate for the first time that by adding the hadron energy information along with the muon energy and muon direction in each event, the sensitivity of ICAL to the NSI parameter epsilon(mu tau) can be enhanced significantly. The most optimistic bound on epsilon(mu tau) that we obtain is – 0.01 < epsilon(mu tau) < 0.01 at 90% C.L. using 500 kt.yr exposure and considering E-mu, cos theta(mu), and E-had' as observables in their ranges of [1, 21] GeV, [- 1, 1], and [0, 25] GeV, respectively. We discuss for the first time the importance of the charge identification capability of the ICAL detector to have better constraints on epsilon(mu t). We also study the impact of non-zero epsilon(mu tau) on mass hierarchy determination and precision measurement of oscillation parameters.  
  Address [Khatun, Amina; Chatterjee, Sabya Sachi; Agarwalla, Sanjib Kumar] Inst Phys, Sachivalaya Marg,Sain Sch Post, Bhubaneswar 751005, India, Email: amina@iopb.res.in;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000543522000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4450  
Permanent link to this record
 

 
Author (up) KM3NeT Collaboration (Ageron, M. et al); Calvo, D.; Coleiro, A.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Real, D.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 2 Pages 99 - 11pp  
  Keywords  
  Abstract KM3NeT is a research infrastructure located in the Mediterranean Sea, that will consist of two deep-sea Cherenkov neutrino detectors. With one detector (ARCA), the KM3NeT Collaboration aims at identifying and studying TeV-PeV astrophysical neutrino sources. With the other detector (ORCA), the neutrino mass ordering will be determined by studying GeV-scale atmospheric neutrino oscillations. The first KM3NeT detection units were deployed at the Italian and French sites between 2015 and 2017. In this paper, a description of the detector is presented, together with a summary of the procedures used to calibrate the detector in-situ. Finally, the measurement of the atmospheric muon flux between 2232-3386 m seawater depth is obtained.  
  Address [Ageron, M.; Bertin, V.; Billault, M.; Brunner, J.; Busto, J.; Caillat, L.; Cosquer, A.; Coyle, P.; Domi, A.; Dornic, D.; Enzenhofer, A.; Henry, S.; Keller, P.; Lamare, P.; Laurence, J.; Lincetto, M.; Maggi, G.; Perrin-Terrin, M.; Quinn, L.; Royon, J.; Salvadori, I.; Tezier, D.; Theraube, S.; Zaborov, D.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France, Email: simone.biagi@infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000514581600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4302  
Permanent link to this record
 

 
Author (up) KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan Chowdhury, N.R.; Manczak, J.; Muñoz Perez, D.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 11 Pages P11027 - 18pp  
  Keywords Cherenkov detectors; Manufacturing; Overall mechanics design (support structures and materials, vibration analysis etc); Special cables  
  Abstract KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea. It will house a neutrino telescope comprising hundreds of networked moorings – detection units or strings – equipped with optical instrumentation to detect the Cherenkov radiation generated by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings typically used for oceanography, several key features of the KM3NeT string are different: the instrumentation is contained in transparent and thus unprotected glass spheres; two thin Dyneema (R) ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper wires for data and power transmission, respectively, runs along the full length of the mooring. Also, compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings, a custom-made, fast deployment method was designed. Despite the length of several hundreds of metres, the slim design of the string allows it to be compacted into a small, re-usable spherical launching vehicle instead of deploying the mooring weight down from a surface vessel. After being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle rolling along the two ropes. The design of the vehicle, the loading with a string, and its underwater self-unrolling are detailed in this paper.  
  Address [Aiello, S.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: eberbee@km3net.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000595650800015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4632  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva