toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Oliver, J.F.; Fuster-Garcia, E.; Cabello, J.; Tortajada, S.; Rafecas, M. doi  openurl
  Title Application of Artificial Neural Network for Reducing Random Coincidences in PET Type Journal Article
  Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 60 Issue 5 Pages 3399-3409  
  Keywords  
  Abstract Positron Emission Tomography (PET) is based on the detection in coincidence of the two photons created in a positron annihilation. In conventional PET, this coincidence identification is usually carried out through a coincidence electronic unit. An accidental coincidence occurs when two photons arising from different annihilations are classified as a coincidence. Accidental coincidences are one of the main sources of image degradation in PET. Some novel systems allow coincidences to be selected post-acquisition in software, or in real time through a digital coincidence engine in an FPGA. These approaches provide the user with extra flexibility in the sorting process and allow the application of alternative coincidence sorting procedures. In this work a novel sorting procedure based on Artificial Neural Network (ANN) techniques has been developed. It has been compared to a conventional coincidence sorting algorithm based on a time coincidence window. The data have been obtained from Monte-Carlo simulations. A small animal PET scanner has been implemented to this end. The efficiency (the ratio of correct identifications) can be selected for both methods. In one case by changing the actual value of the coincidence window used, and in the other by changing a threshold at the output of the neural network. At matched efficiencies, the ANN-based method always produces a sorted output with a smaller random fraction. In addition, two differential trends are found: the conventional method presents a maximum achievable efficiency, while the ANN-based method is able to increase the efficiency up to unity, the ideal value, at the cost of increasing the random fraction. Images reconstructed using ANN sorted data (no compensation for randoms) present better contrast, and those image features which are more affected by randoms are enhanced. For the image quality phantom used in the paper, the ANN method decreases the spill-over ratio by a factor of 18%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000325827200027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1611  
Permanent link to this record
 

 
Author (up) Oliver, J.F.; Rafecas, M. doi  openurl
  Title Modelling Random Coincidences in Positron Emission Tomography by Using Singles and Prompts: A Comparison Study Type Journal Article
  Year 2016 Publication PLoS One Abbreviated Journal PLoS ONE  
  Volume 11 Issue 9 Pages e0162096 - 22pp  
  Keywords  
  Abstract Random coincidences degrade the image in Positron Emission Tomography, PET. To compensate for their degradation effects, the rate of random coincidences should be estimated. Under certain circumstances, current estimation methods fail to provide accurate results. We propose a novel method, “Singles-Prompts” (SP), that includes the information conveyed by prompt coincidences and models the pile-up. The SP method has the same structure than the well-known “Singles Rate” (SR) approach. Hence, SP can straightforwardly replace SR. In this work, the SP method has been extensively assessed and compared to two conventional methods, SR and the delayed window (DW) method, in a preclinical PET scenario using Monte-Carlo simulations. SP offers accurate estimates for the randoms rates, while SR and DW tend to overestimate the rates (similar to 10%, and 5%, respectively). With pile-up, the SP method is more robust than SR (but less than DW). At the image level, the contrast is overestimated in SR-corrected images, + 16%, while SP produces the correct value. Spill-over is slightly reduced using SP instead of SR. The DW images values are similar to those of SP except for low-statistic scenarios, where DW behaves as if randoms were not compensated for. In particular, the contrast is reduced, -16%. In general, the better estimations of SP translate into better image quality.  
  Address [Oliver, Josep F.; Rafecas, M.] Inst Fis Corpuscular IFIC UV CSIC, Valencia, Spain, Email: josep.f.oliver@uv.es  
  Corporate Author Thesis  
  Publisher Public Library Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000383255200040 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2825  
Permanent link to this record
 

 
Author (up) Oliver, J.F.; Rafecas, M. doi  openurl
  Title Improving the singles rate method for modeling accidental coincidences in high-resolution PET Type Journal Article
  Year 2010 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 55 Issue 22 Pages 6951-6971  
  Keywords  
  Abstract Random coincidences ('randoms') are one of the main sources of image degradation in PET imaging. In order to correct for this effect, an accurate method to estimate the contribution of random events is necessary. This aspect becomes especially relevant for high-resolution PET scanners where the highest image quality is sought and accurate quantitative analysis is undertaken. One common approach to estimate randoms is the so-called singles rate method (SR) widely used because of its good statistical properties. SR is based on the measurement of the singles rate in each detector element. However, recent studies suggest that SR systematically overestimates the correct random rate. This overestimation can be particularly marked for low energy thresholds, below 250 keV used in some applications and could entail a significant image degradation. In this work, we investigate the performance of SR as a function of the activity, geometry of the source and energy acceptance window used. We also investigate the performance of an alternative method, which we call 'singles trues' (ST) that improves SR by properly modeling the presence of true coincidences in the sample. Nevertheless, in any real data acquisition the knowledge of which singles are members of a true coincidence is lost. Therefore, we propose an iterative method, STi, that provides an estimation based on ST but which only requires the knowledge of measurable quantities: prompts and singles. Due to inter-crystal scatter, for wide energy windows ST only partially corrects SR overestimations. While SR deviations are in the range 86-300% (depending on the source geometry), the ST deviations are systematically smaller and contained in the range 4-60%. STi fails to reproduce the ST results, although for not too high activities the deviation with respect to ST is only a few percent. For conventional energy windows, i.e. those without inter-crystal scatter, the ST method corrects the SR overestimations, and deviations from the true random rate are of the order of 1% or less. In addition, in the case of conventional energy window STi results reproduce ST results and therefore the former can be used to obtain the true random rate.  
  Address [Oliver, Josep F.; Rafecas, Magdalena] Univ Valencia, CSIC, Inst Fis Corpuscular, IFIC, E-46003 Valencia, Spain, Email: josep.f.oliver@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283789700025 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 344  
Permanent link to this record
 

 
Author (up) Ortega, P.G.; Torres-Espallardo, I.; Cerutti, F.; Ferrari, A.; Gillam, J.E.; Lacasta, C.; Llosa, G.; Oliver, J.F.; Sala, P.R.; Solevi, P.; Rafecas, M. doi  openurl
  Title Noise evaluation of Compton camera imaging for proton therapy Type Journal Article
  Year 2015 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 60 Issue 5 Pages 1845-1863  
  Keywords proton therapy; Compton camera; Monte Carlo methods; FLUKA; prompt gamma; range verification; MLEM  
  Abstract Compton Cameras emerged as an alternative for real-time dose monitoring techniques for Particle Therapy (PT), based on the detection of prompt-gammas. As a consequence of the Compton scattering process, the gamma origin point can be restricted onto the surface of a cone (Compton cone). Through image reconstruction techniques, the distribution of the gamma emitters can be estimated, using cone-surfaces backprojections of the Compton cones through the image space, along with more sophisticated statistical methods to improve the image quality. To calculate the Compton cone required for image reconstruction, either two interactions, the last being photoelectric absorption, or three scatter interactions are needed. Because of the high energy of the photons in PT the first option might not be adequate, as the photon is not absorbed in general. However, the second option is less efficient. That is the reason to resort to spectral reconstructions, where the incoming. energy is considered as a variable in the reconstruction inverse problem. Jointly with prompt gamma, secondary neutrons and scattered photons, not strongly correlated with the dose map, can also reach the imaging detector and produce false events. These events deteriorate the image quality. Also, high intensity beams can produce particle accumulation in the camera, which lead to an increase of random coincidences, meaning events which gather measurements from different incoming particles. The noise scenario is expected to be different if double or triple events are used, and consequently, the reconstructed images can be affected differently by spurious data. The aim of the present work is to study the effect of false events in the reconstructed image, evaluating their impact in the determination of the beam particle ranges. A simulation study that includes misidentified events (neutrons and random coincidences) in the final image of a Compton Telescope for PT monitoring is presented. The complete chain of detection, from the beam particle entering a phantom to the event classification, is simulated using FLUKA. The range determination is later estimated from the reconstructed image obtained from a two and three-event algorithm based on Maximum Likelihood Expectation Maximization. The neutron background and random coincidences due to a therapeutic-like time structure are analyzed for mono-energetic proton beams. The time structure of the beam is included in the simulations, which will affect the rate of particles entering the detector.  
  Address [Ortega, P. G.; Cerutti, F.; Ferrari, A.] CERN European Org Nucl Res, CH-1217 Meyrin, Switzerland, Email: pgarciao@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000349530700009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2115  
Permanent link to this record
 

 
Author (up) Solevi, P. et al; Oliver, J.F.; Gillam, J.E.; Rafecas, M. doi  openurl
  Title A Monte-Carlo based model of the AX-PET demonstrator and its experimental validation Type Journal Article
  Year 2013 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 58 Issue 16 Pages 5495-5510  
  Keywords  
  Abstract AX-PET is a novel PET detector based on axially oriented crystals and orthogonal wavelength shifter (WLS) strips, both individually read out by silicon photo-multipliers. Its design decouples sensitivity and spatial resolution, by reducing the parallax error due to the layered arrangement of the crystals. Additionally the granularity of AX-PET enhances the capability to track photons within the detector yielding a large fraction of inter-crystal scatter events. These events, if properly processed, can be included in the reconstruction stage further increasing the sensitivity. Its unique features require dedicated Monte-Carlo simulations, enabling the development of the device, interpreting data and allowing the development of reconstruction codes. At the same time the non-conventional design of AX-PET poses several challenges to the simulation and modeling tasks, mostly related to the light transport and distribution within the crystals and WLS strips, as well as the electronics readout. In this work we present a hybrid simulation tool based on an analytical model and a Monte-Carlo based description of the AX-PET demonstrator. It was extensively validated against experimental data, providing excellent agreement.  
  Address [Solevi, P.; Oliver, J. F.; Gillam, J. E.; Rafecas, M.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: paola.solevi@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000322775300012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1544  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva