|   | 
Details
   web
Records
Author AMON Team, ANTARES and HAWC Collaborations (Ayala Solares, H.A. et al); Alves Garres, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Manczak, J.; Pieterse, C.; Real, D.; Sanchez-Losa, A.; Zornoza, J. D.; Zuniga, J.; Salesa Greus, F.
Title Search for Gamma-Ray and Neutrino Coincidences Using HAWC and ANTARES Data Type Journal Article
Year 2023 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 944 Issue 2 Pages 166 - 9pp
Keywords
Abstract (up) In the quest for high-energy neutrino sources, the Astrophysical Multimessenger Observatory Network has implemented a new search by combining data from the High Altitude Water Cherenkov (HAWC) Observatory and the Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) neutrino telescope. Using the same analysis strategy as in a previous detector combination of HAWC and IceCube data, we perform a search for coincidences in HAWC and ANTARES events that are below the threshold for sending public alerts in each individual detector. Data were collected between 2015 July and 2020 February with a live time of 4.39 yr. Over this time period, three coincident events with an estimated false-alarm rate of <1 coincidence per year were found. This number is consistent with background expectations.
Address [Solares, H. A. Ayala; Coutu, S.; Cowen, D.; Fox, D. B.; Gregoire, T.; Mostafa, M.; Murase, K.; Wissel, S.; Alonso, M. Fernandez; Whitaker, K.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA, Email: hgayala@psu.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000989686100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5566
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Ruiz-Rivas, J.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Search for Cosmic Neutrino Point Sources with Four Years of Data from the Antares Telescope Type Journal Article
Year 2012 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 760 Issue 1 Pages 53 - 10pp
Keywords astroparticle physics; cosmic rays; neutrinos
Abstract (up) In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E-nu(-2). spectrum, these flux limits are at 1-10x10(-8) GeV cm(-2) s(-1) for declinations ranging from -90 degrees to 40 degrees. Limits for specific models of RX J1713.7-3946 and Vela X, which include information on the source morphology and spectrum, are also given.
Address [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Ferri, M.; Larosa, G.; Martinez-Mora, J. A.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, E-46730 Gandia, Spain
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000310922200053 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1219
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title Constraints on the Very High Energy Gamma-Ray Emission from Short GRBs with HAWC Type Journal Article
Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 936 Issue 2 Pages 126 - 14pp
Keywords
Abstract (up) Many gamma-ray bursts (GRBs) have been observed from radio wavelengths, and a few at very high energies (VHEs, >100 GeV). The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is well suited to study transient phenomena at VHEs owing to its large field of view and duty cycle. These features allow for searches of VHE emission and can probe different model assumptions of duration and spectra. In this paper, we use data collected by HAWC between 2014 December and 2020 May to search for emission in the energy range from 80 to 800 GeV coming from a sample of 47 short GRBs that triggered the Fermi, Swift, and Konus satellites during this period. This analysis is optimized to search for delayed and extended VHE emission within the first 20 s of each burst. We find no evidence of VHE emission, either simultaneous or delayed, with respect to the prompt emission. Upper limits (90% confidence level) derived on the GRB fluence are used to constrain the synchrotron self-Compton forward-shock model. Constraints for the interstellar density as low as 10(-2) cm(-3) are obtained when assuming z = 0.3 for bursts with the highest keV fluences such as GRB 170206A and GRB 181222841. Such a low density makes observing VHE emission mainly from the fast-cooling regime challenging.
Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Zhou, H.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA, Email: nifraija@astro.unam.mx;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000852139800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5354
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Aab, A. et al); Pastor, S.
Title A search for point sources of EeV photons Type Journal Article
Year 2014 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 789 Issue 2 Pages 160 - 12pp
Keywords astroparticle physics; cosmic rays; methods: data analysis
Abstract (up) Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85 degrees to +20 degrees, in an energy range from 10(17.3) eV to 10(18.5) eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm(-2) s(-1), and no celestial direction exceeds 0.25 eV cm(-2) s(-1). These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.
Address [Aab, A.; Buchholz, P.; Erfani, M.; Froehlich, U.; Heimann, P.; Homola, P.; Kuempel, D.; Niechciol, M.; Ochilo, L.; Risse, M.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, D-57068 Siegen, Germany
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000338674900069 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1842
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F.
Title Removing Astrophysics in 21 cm Maps with Neural Networks Type Journal Article
Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 907 Issue 1 Pages 44 - 14pp
Keywords Cosmology; Cold dark matter; Dark matter; Dark matter distribution; H I line emission; Intergalactic medium; Cosmological evolution; Convolutional neural networks; Large-scale structure of the universe
Abstract (up) Measuring temperature fluctuations in the 21 cm signal from the epoch of reionization and the cosmic dawn is one of the most promising ways to study the universe at high redshifts. Unfortunately, the 21 cm signal is affected by both cosmology and astrophysics processes in a nontrivial manner. We run a suite of 1000 numerical simulations with different values of the main astrophysical parameters. From these simulations we produce tens of thousands of 21 cm maps at redshifts 10 <= z <= 20. We train a convolutional neural network to remove the effects of astrophysics from the 21 cm maps and output maps of the underlying matter field. We show that our model is able to generate 2D matter fields not only that resemble the true ones visually but whose statistical properties agree with the true ones within a few percent down to scales 2 Mpc(-1). We demonstrate that our neural network retains astrophysical information that can be used to constrain the value of the astrophysical parameters. Finally, we use saliency maps to try to understand which features of the 21 cm maps the network is using in order to determine the value of the astrophysical parameters.
Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: Pablo.Villanueva@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000612333400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4698
Permanent link to this record