|   | 
Details
   web
Records
Author (up) HAWC and HESS Collaborations (Abdalla, H. et al); Salesa Greus, F.
Title TeV Emission of Galactic Plane Sources with HAWC and HESS Type Journal Article
Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 917 Issue 1 Pages 6 - 16pp
Keywords
Abstract The High Altitude Water Cherenkov (HAWC) observatory and the High Energy Stereoscopic System (H.E.S.S.) are two leading instruments in the ground-based very-high-energy gamma-ray domain. HAWC employs the water Cherenkov detection (WCD) technique, while H.E.S.S. is an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The two facilities therefore differ in multiple aspects, including their observation strategy, the size of their field of view, and their angular resolution, leading to different analysis approaches. Until now, it has been unclear if the results of observations by both types of instruments are consistent: several of the recently discovered HAWC sources have been followed up by IACTs, resulting in a confirmed detection only in a minority of cases. With this paper, we go further and try to resolve the tensions between previous results by performing a new analysis of the H.E.S.S. Galactic plane survey data, applying an analysis technique comparable between H.E.S.S. and HAWC. Events above 1 TeV are selected for both data sets, the point-spread function of H.E.S.S. is broadened to approach that of HAWC, and a similar background estimation method is used. This is the first detailed comparison of the Galactic plane observed by both instruments. H.E.S.S. can confirm the gamma-ray emission of four HAWC sources among seven previously undetected by IACTs, while the three others have measured fluxes below the sensitivity of the H.E.S.S. data set. Remaining differences in the overall gamma-ray flux can be explained by the systematic uncertainties. Therefore, we confirm a consistent view of the gamma-ray sky between WCD and IACT techniques.
Address [Abdalla, H.; Backes, M.; Davids, I. D.; Kasai, E.; Shapopi, J. N. S.; Shiningayamwe, K.; Steenkamp, R.; van Rensburg, C.] Univ Namibia, Dept Phys, Private Bag 13301, Windhoek 10005, Namibia, Email: armelle.jardin-blicq@mpi-hd.mpg.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000683127600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4932
Permanent link to this record
 

 
Author (up) HAWC Collaboration (Abeysekara, A.U. et al); Salesa Greus, F.
Title The High-Altitude Water Cherenkov (HAWC) observatory in Mexico: The primary detector Type Journal Article
Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1052 Issue Pages 168253 - 18pp
Keywords Physics – instrumentation and detectors; Water Cherenkov Detectors; Astrophysics; High energy physics – experiment; Nuclear experiment
Abstract The High-Altitude Water Cherenkov (HAWC) observatory is a second-generation continuously operated, wide field-of-view, TeV gamma-ray observatory. The HAWC observatory and its analysis techniques build on experience of the Milagro experiment in using ground-based water Cherenkov detectors for gamma-ray astronomy. HAWC is located on the Sierra Negra volcano in Mexico at an elevation of 4100 meters above sea level. The completed HAWC observatory principal detector (HAWC) consists of 300 closely spaced water Cherenkov detectors, each equipped with four photomultiplier tubes to provide timing and charge information to reconstruct the extensive air shower energy and arrival direction. The HAWC observatory has been optimized to observe transient and steady emission from sources of gamma rays within an energy range from several hundred GeV to several hundred TeV. However, most of the air showers detected are initiated by cosmic rays, allowing studies of cosmic rays also to be performed. This paper describes the characteristics of the HAWC main array and its hardware.
Address [Abeysekara, A. U.; Barber, A. S.; Hona, B.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT USA, Email: eduardo.delafuentea@academicos.udg.mx
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001063137300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5674
Permanent link to this record
 

 
Author (up) HAWC Collaboration (Abeysekara, A.U. et al); Salesa Greus, F.
Title HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon Type Journal Article
Year 2021 Publication Nature Astronomy Abbreviated Journal Nat. Astron.
Volume 4 Issue Pages 465–471
Keywords
Abstract Cosmic rays with energies up to a few PeV are known to be accelerated within the Milky Way(1,2). Traditionally, it has been presumed that supernova remnants were the main source of these very-high-energy cosmic rays(3,4), but theoretically it is difficult to accelerate protons to PeV energies(5,6) and observationally there simply is no evidence of the remnants being sources of hadrons with energies above a few tens of TeV7,8. One possible source of protons with those energies is the Galactic Centre region(9). Here, we report observations of 1-100 TeV gamma rays coming from the 'Cygnus Cocoon'(10), which is a superbubble that surrounds a region of massive star formation. These gamma rays are likely produced by 10-1,000 TeV freshly accelerated cosmic rays that originate from the enclosed star-forming region Cyg OB2. Until now it was not known that such regions could accelerate particles to these energies. The measured flux likely originates from hadronic interactions. The spectral shape and the emission profile of the Cocoon changes from GeV to TeV energies, which reveals the transport of cosmic particles and historical activity in the superbubble.
Address [Abeysekara, A. U.; Hona, B.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA, Email: rdb3@stanford.edu;
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-3366 ISBN Medium
Area Expedition Conference
Notes WOS:000627714400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4763
Permanent link to this record
 

 
Author (up) HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title Detailed Analysis of the TeV gamma-Ray Sources 3HWC J1928+178, 3HWC J1930+188, and the New Source HAWC J1932+192 Type Journal Article
Year 2023 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 942 Issue 2 Pages 96 - 18pp
Keywords
Abstract The latest High Altitude Water Cherenkov (HAWC) point-like source catalog up to 56 TeV reported the detection of two sources in the region of the Galactic plane at galactic longitude 52 degrees < l < 55 degrees, 3HWC J1930+188 and 3HWC J1928+178. The first one is associated with a known TeV source, the supernova remnant SNR G054.1+00.3. It was discovered by one of the currently operating Imaging Atmospheric Cherenkov Telescope (IACT), the Very Energetic Radiation Imaging Telescope Array System (VERITAS), detected by the High Energy Stereoscopic System (H.E.S.S), and identified as a composite SNR. However, the source 3HWC J1928+178, discovered by HAWC and coincident with the pulsar PSR J1928+1746, was not detected by any IACT despite their long exposure on the region, until a recent new analysis of H.E.S.S. data was able to confirm it. Moreover, no X-ray counterpart has been detected from this pulsar. We present a multicomponent fit of this region using the latest HAWC data. This reveals an additional new source, HAWC J1932+192, which is potentially associated with the pulsar PSR J1932+1916, whose gamma-ray emission could come from the acceleration of particles in its pulsar wind nebula. In the case of 3HWC J1928+178, several possible explanations are explored, in an attempt to unveil the origins of the very-high-energy gamma-ray emission.
Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: armelle.jardin-blicq@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000942614000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5484
Permanent link to this record
 

 
Author (up) HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title HAWC Study of the Ultra-high-energy Spectrum of MGRO J1908+06 Type Journal Article
Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 928 Issue 2 Pages 116 - 13pp
Keywords
Abstract We report TeV gamma-ray observations of the ultra-high-energy source MGRO J1908+06 using data from the High Altitude Water Cherenkov Observatory. This source is one of the highest-energy known gamma-ray sources, with emission extending past 200 TeV. Modeling suggests that the bulk of the TeV gamma-ray emission is leptonic in nature, driven by the energetic radio-faint pulsar PSR J1907+0602. Depending on what assumptions are included in the model, a hadronic component may also be allowed. Using the results of the modeling, we discuss implications for detection prospects by multi-messenger campaigns.
Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: kmalone@lanl.gov
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000776453700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5187
Permanent link to this record