|   | 
Details
   web
Records
Author (up) Caputo, A.; Hernandez, P.; Lopez-Pavon, J.; Salvado, J.
Title The seesaw portal in testable models of neutrino masses Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 112 - 20pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract A Standard Model extension with two Majorana neutrinos can explain the measured neutrino masses and mixings, and also account for the matter-antimatter asymmetry in a region of parameter space that could be testable in future experiments. The testability of the model relies to some extent on its minimality. In this paper we address the possibility that the model might be extended by extra generic new physics which we parametrize in terms of a low-energy effective theory. We consider the effects of the operators of the lowest dimensionality, d = 5, and evaluate the upper bounds on the coefficients so that the predictions of the minimal model are robust. One of the operators gives a new production mechanism for the heavy neutrinos at LHC via higgs decays. The higgs can decay to a pair of such neutrinos that, being long-lived, leave a powerful signal of two displaced vertices. We estimate the LHC reach to this process.
Address [Caputo, A.; Hernandez, P.; Salvado, J.] Univ Valencia, Inst Fis Corpusc, Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: andrea.caputo@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000404625300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3196
Permanent link to this record
 

 
Author (up) Caputo, A.; Hernandez, P.; Rius, N.
Title Leptogenesis from oscillations and dark matter Type Journal Article
Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 79 Issue 7 Pages 574 - 17pp
Keywords
Abstract An extension of the Standard Model with Majorana singlet fermions in the 1-100GeV range can explain the light neutrino masses and give rise to a baryon asymmetry at freeze-in of the heavy states, via their CP-violating oscillations. In this paper we consider extending this scenario to also explain dark matter. We find that a very weakly coupled B-L gauge boson, an invisible QCD axion model, and the singlet majoron model can simultaneously account for dark matter and the baryon asymmetry.
Address [Caputo, Andrea] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: andrea.caputo@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000475617900002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4090
Permanent link to this record
 

 
Author (up) Chun, E.J.; Cvetic, G.; Dev, P.S.B.; Drewes, M.; Fong, C.S.; Garbrecht, B.; Hambye, T.; Harz, J.; Hernandez, P.; Kim, C.S.; Molinaro, E.; Nardi, E.; Racker, J.; Rius, N.; Zamora-Saa, J.
Title Probing leptogenesis Type Journal Article
Year 2018 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 33 Issue 5-6 Pages 1842005 - 99pp
Keywords Neutrino interactions; nonstandard-model neutrinos; right-handed neutrinos; extensions of electroweak gauge sector; supersymmetric models
Abstract The focus of this paper lies on the possible experimental tests of leptogenesis scenarios. We consider both leptogenesis generated from oscillations, as well as leptogenesis from out-of-equilibrium decays. As the Akhmedov-Rubakov-Smirnov (ARS) mechanism allows for heavy neutrinos in the GeV range, this opens up a plethora of possible experimental tests, e.g. at neutrino oscillation experiments, neutrinoless double beta decay, and direct searches for neutral heavy leptons at future facilities. In contrast, testing leptogenesis from out-of-equilibrium decays is a quite difficult task. We comment on the necessary conditions for having successful leptogenesis at the TeV-scale. We further discuss possible realizations and their model specific testability in extended seesaw models, models with extended gauge sectors, and supersymmetric leptogenesis. Not being able to test high-scale leptogenesis directly, we present a way to falsify such scenarios by focusing on their washout processes. This is discussed specifically for the left-right symmetric model and the observation of a heavy W-R, as well as model independently when measuring Delta L = 2 washout processes at the LHC or neutrinoless double beta decay.
Address [Chun, E. J.] Korea Inst Adv Study, Seoul 02455, South Korea, Email: jharz@lpthe.jussieu.fr
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000426586100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3507
Permanent link to this record
 

 
Author (up) Coloma, P.; Donini, A.; Fernandez-Martinez, E.; Hernandez, P.
Title Precision on leptonic mixing parameters at future neutrino oscillation experiments Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 073 - 27pp
Keywords Neutrino Physics; CP violation; Standard Model
Abstract We perform a comparison of the different future neutrino oscillation experiments based on the achievable precision in the determination of the fundamental parameters theta(13) and the CP phase, delta, assuming that theta(13) is in the range indicated by the recent Daya Bay measurement. We study the non-trivial dependence of the error on delta on its true value. When matter effects are small, the largest error is found at the points where CP violation is maximal, and the smallest at the CP conserving points. The situation is different when matter effects are sizable. As a result of this effect, the comparison of the physics reach of different experiments on the basis of the CP discovery potential, as usually done, can be misleading. We have compared various proposed super-beam, beta-beam and neutrino factory setups on the basis of the relative precision of theta(13) and the error on delta. Neutrino factories, both high-energy or low-energy, outperform alternative beam technologies. An ultimate precision on theta(13) below 3% and an error on delta of <= 7 degrees at 1 sigma (1 d.o.f.) can be obtained at a neutrino factory.
Address [Coloma, P.] Virginia Tech, Dept Phys, Ctr Neutrino Phys, Blacksburg, VA 24061 USA, Email: coloma@vt.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000306416500074 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1141
Permanent link to this record
 

 
Author (up) Coloma, P.; Hernandez, P.; Muñoz, V.; Shoemaker, I.M.
Title New constraints on heavy neutral leptons from Super-Kamiokande data Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 3 Pages 235 - 7pp
Keywords
Abstract Heavy neutral leptons are predicted in many extensions of the Standard Model with massive neutrinos. If kinematically accessible, they can be copiously produced from kaon and pion decays in atmospheric showers, and subsequently decay inside large neutrino detectors. We perform a search for these long-lived particles using Super-Kamiokande multi-GeV neutrino data and derive stringent limits on the mixing with electron, muon and tau neutrinos as a function of the long-lived particle mass. We also present the limits on the branching ratio versus lifetime plane, which are helpful in determining the constraints in non-minimal models where the heavy neutral leptons have new interactions with the Standard Model.
Address [Coloma, P.; Hernandez, P.; Munoz, V.] UVEG, CSIC, IFIC, Edificio Inst Invest,Apt 22085, Valencia 46071, Spain, Email: pilar.coloma@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000531858300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4394
Permanent link to this record