toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) IDS Collaboration (Benito, J. et al); Nacher, E. doi  openurl
  Title Detailed structure of 131Sn populated in the β decay of isomerically purified 131In states Type Journal Article
  Year 2024 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 110 Issue 1 Pages 014328 - 19pp  
  Keywords  
  Abstract The excited structure of the single-hole nucleus 131 Sn populated by the beta – decay of 131 In was investigated in detail at the ISOLDE facility at CERN. This new experiment took advantage of isomeric purification capabilities provided by resonant ionization, making it possible to independently study the decay of each isomer for the first time. The position of the first-excited nu h 11 / 2 neutron-hole state was confirmed via an independent mass spectroscopy experiment performed at the Ion Guide Isotope Separator On-Line facility at the University of Jyv & auml;skyl & auml;. The level scheme of 131 Sn was notably expanded with the addition of 31 new gamma-ray transitions and 22 new excited levels. The gamma-emitting excited levels above the neutron separation energy in 131 Sn were investigated, revealing a large number of states, which in some cases decay by transitions to other neutron-unbound states. Our analysis showed the dependence between the population of these states in 131 Sn and the beta-decaying 131 In state feeding them. Profiting from the isomer selectivity, it was possible to estimate the direct beta feeding to the 3/2+ / 2 + ground and 11/2- / 2 – isomeric states, disentangling the contributions from the three indium parent states. This made possible to resolve the discrepancies in log ft for first-forbidden transitions observed in previous studies, and to determine the beta-delayed neutron decay probability (Pn) P n ) values of each indium isomers independently. The first measurement of subnanosecond lifetimes in 131 Sn was performed in this work. A short T 1 / 2 = 18(4)-ps value was measured for the 1/2+ / 2 + neutron single-hole 332-keV state, which indicates an enhanced l-forbidden M 1 behavior for the nu 3 s – 1 1/2 / 2 -> nu 3 d – 13 / 2 transition. The measured half-lives of high-energy states populated in the beta decay of the (21/2+) / 2 + ) second isomeric state ( 131 m 2 In) provided valuable information on transition rates, supporting the interpretation of these levels as core-excited states analogous to those observed in the doubly-magic 132 Sn.  
  Address [Benito, J.; Fraile, L. M.; Carmona, M.; Galve, P.; Garcia-Diez, M.; Ibanez, P.; Lopez-Montes, A.; Martinez, M. C.; Murias, J. R.; Sanchez-Parcerisa, D.; Sanchez-Tembleque, V.; Udias, J. M.; Vedia, V.; Villa-Abaunza, A.] Univ Complutense Madrid, Grp Fis Nucl, CEI Moncloa, E-28040 Madrid, Spain, Email: jabenito@ucm.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001285484500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6225  
Permanent link to this record
 

 
Author (up) IDS Collaboration (Benito, J. et al); Nacher, E. url  doi
openurl 
  Title Detailed spectroscopy of doubly magic Sn-132 Type Journal Article
  Year 2020 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 102 Issue 1 Pages 014328 - 18pp  
  Keywords  
  Abstract The structure of the doubly magic Sn-132(50)82 has been investigated at the ISOLDE facility at CERN, populated both by the beta(-) decay of In-132 and beta(-)-delayed neutron emission of In-133. The level scheme of Sn-13(2) is greatly expanded with the addition of 68 gamma transitions and 17 levels observed for the first time in the beta decay. The information on the excited structure is completed by new gamma transitions and states populated in the beta-n decay of In-133. Improved delayed neutron emission probabilities are obtained both for In-132 and In-133. Level lifetimes are measured via the advanced time-delayed beta gamma gamma(t) fast-timing method. An interpretation of the level structure is given based on the experimental findings and the particle-hole configurations arising from core excitations both from the N = 82 and Z = 50 shells, leading to positive- and negative-parity particle-hole multiplets. The experimental information provides new data to challenge the theoretical description of Sn-132.  
  Address [Benito, J.; Fraile, L. M.; Carmona, M.; Galve, P.; Garcia-Diez, M.; Ibanez, P.; Lopez-Montes, A.; Martinez, M. C.; Sanchez-Parcerisa, D.; Sanchez-Tembleque, V; Udias, J. M.; Vedia, V.; Villa-Abaunza, A.] Univ Complutense Madrid, Grp Fis Nucl, CEI Moncloa, E-28040 Madrid, Spain, Email: jabenito@ucm.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000556554700006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4488  
Permanent link to this record
 

 
Author (up) IDS Collaboration (Heideman, J. et al); Algora, A.; Morales, A.I. doi  openurl
  Title Evidence of nonstatistical neutron emission following beta decay near doubly magic Sn-132 Type Journal Article
  Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 108 Issue 2 Pages 024311 - 9pp  
  Keywords  
  Abstract Models of the beta-delayed neutron emission (beta n) assume that neutrons are emitted statistically via an intermediate compound nucleus post beta decay. Evidence to the contrary was found in an In-134 beta-decay experiment carried out at ISOLDE CERN. Neutron emission probabilities from the unbound states in Sn-134 to known low-lying, single-particle states in Sn-133 were measured. The neutron energies were determined using the time-of-flight technique, and the subsequent decay of excited states in Sn-133 was studied using gamma-ray detectors. Individual beta n probabilities were determined by correlating the relative intensities and energies of neutrons and gamma rays. The experimental data disagree with the predictions of representative statistical models which are based upon the compound nucleus postulate. Our results suggest that violation of the compound nucleus assumption may occur in beta-delayed neutron emission. This impacts the neutron-emission probabilities and other properties of nuclei participating in the r-process. A model of neutron emission, which links the observed neutron emission probabilities to nuclear shell effects, is proposed.  
  Address [Heideman, J.; Grzywacz, R.; Xu, Z. Y.; Madurga, M.; Halverson, C.; King, T. T.; Singh, M.; Yokoyama, R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001053419100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5620  
Permanent link to this record
 

 
Author (up) IDS Collaboration (Lica, R. et al); Morales, A.I. doi  openurl
  Title Evolution of deformation in neutron-rich Ba isotopes up to A=150 Type Journal Article
  Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 97 Issue 2 Pages 024305 - 12pp  
  Keywords  
  Abstract The occurrence of octupolar shapes in the Ba isotopic chain was recently established experimentally up to N = 90. To further extend the systematics, the evolution of shapes in the most neutron-rich members of the Z = 56 isotopic chain accessible at present, Ba-148,Ba-150, has been studied via beta decay at the ISOLDE Decay Station. This paper reports on the first measurement of the positive-and negative-parity low-spin excited states of 150Ba and presents an extension of the beta-decay scheme of Cs-148. Employing the fast timing technique, half-lives for the 2(1)(+) level in both nuclei have been determined, resulting in T-1/2 = 1.51(1) ns for Ba-148 and T-1/2 = 3.4(2) ns for Ba-150. The systematics of low-spin states, together with the experimental determination of the B(E2 : 2(+) -> 0(+)) transition probabilities, indicate an increasing collectivity in Ba148-150, towards prolate deformed shapes. The experimental data are compared to symmetry conserving configuration mixing (SCCM) calculations, confirming an evolution of increasingly quadrupole deformed shapes with a definite octupolar character.  
  Address [Lica, R.; Borge, M. J. G.; Madurga, M.; Kurcewicz, J.; Rapisarda, E.] CERN, ISOLDE EP, CH-1211 Geneva 23, Switzerland, Email: giovanna.benzoni@mi.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000424089400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3471  
Permanent link to this record
 

 
Author (up) IDS Collaboration (Lica, R. et al); Morales, A.I. doi  openurl
  Title Fast-timing study of the l-forbidden 1/2(+) -> 3/2(+) M1 transition in Sn-129 Type Journal Article
  Year 2016 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 93 Issue 4 Pages 044303 - 7pp  
  Keywords  
  Abstract The levels in Sn-129 populated from the beta(-) decay of In-129 isomers were investigated at the ISOLDE facility of CERN using the newly commissioned ISOLDE Decay Station (IDS). The lowest 1/2(+) state and the 3/2(+) ground state in 129Sn are expected to have configurations dominated by the neutron s(1/2) (l = 0) and d(3/2) (l = 2) single-particle states, respectively. Consequently, these states should be connected by a somewhat slow l-forbidden M1 transition. Using fast-timing spectroscopy we havemeasured the half-life of the 1/2(+) 315.3-keV state, T-1/2 = 19(10) ps, which corresponds to a moderately fast M1 transition. Shell-model calculations using the CD-Bonn effective interaction, with standard effective charges and g factors, predict a 4-ns half-life for this level. We can reconcile the shell-model calculations to the measured T-1/2 value by the renormalization of the M1 effective operator for neutron holes.  
  Address [Lica, R.; Borge, M. J. G.; Kurcewicz, J.; Madurga, M.; Rapisarda, E.] CERN, CH-1211 Geneva 23, Switzerland  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373574200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2619  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva