|   | 
Details
   web
Records
Author (up) Coloma, P.; Hernandez, P.; Urrea, S.
Title New bounds on axion-like particles from MicroBooNE Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 025 - 25pp
Keywords Axions and ALPs; Kaons
Abstract Neutrino experiments lie at the edge of the intensity frontier and therefore can be exploited to search for new light particles weakly coupled to the visible sector. In this work we derive new constraints on axion-like particles (ALPs) using data from the MicroBooNE experiment, from a search for e(+)e(-) pairs pointing in the direction of the NuMI absorber. In particular, we consider the addition of higher-dimensional effective operators coupling the ALP to the electroweak gauge bosons. These would induce K -> pi a from kaon decay at rest in the NuMI absorber, as well as ALP decays into pairs of leptons or photons. We discuss in detail and compare various results obtained for the decay width K -> pi a in previous literature. For the operator involving the Higgs, MicroBooNE already sets competitive bounds (comparable to those of NA62) for ALP masses between 100 and 200 MeV. We also compute the expected sensitivities from the full NuMI dataset recorded at MicroBooNE. Our results show that a search for a -> gamma gamma signal may be able to improve over current constraints from beam-dump experiments on the operator involving the ALP coupling to the W.
Address [Coloma, Pilar] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, Calle Nicolas Cabrera 1315, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000836240700003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5323
Permanent link to this record
 

 
Author (up) Coogan, A.; Bertone, G.; Gaggero, D.; Kavanagh, B.J.; Nichols, D.A.
Title Measuring the dark matter environments of black hole binaries with gravitational waves Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 4 Pages 043009 - 22pp
Keywords
Abstract Large dark matter overdensities can form around black holes of astrophysical and primordial origin as they form and grow. This “dark dress” inevitably affects the dynamical evolution of binary systems and induces a dephasing in the gravitational waveform that can be probed with future interferometers. In this paper, we introduce a new analytical model to rapidly compute gravitational waveforms in the presence of an evolving dark matter distribution. We then present a Bayesian analysis determining when dressed black hole binaries can be distinguished from GR-in-vacuum ones and how well their parameters can be measured, along with how close they must be to be detectable by the planned Laser Interferometer Space Antenna (LISA). We show that LISA can definitively distinguish dark dresses from standard binaries and characterize the dark matter environments around astrophysical and primordial black holes for a wide range of model parameters. Our approach can be generalized to assess the prospects for detecting, classifying, and characterizing other environmental effects in gravitational wave physics.
Address [Coogan, Adam; Bertone, Gianfranco] Univ Amsterdam, Gravitat Astroparticle Phys Amsterdam GRAPPA, Inst Theoret Phys Amsterdam, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: adam.coogan@umontreal.ca;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000761177900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5154
Permanent link to this record
 

 
Author (up) Coves, A.; Maestre, H.; Archiles, R.; Andres, M.V.; Gimeno, B.
Title Surface-Impedance Formulation for Hollow-Core Waveguides Based on Subwavelength Gratings Type Journal Article
Year 2022 Publication IEEE Access Abbreviated Journal IEEE Access
Volume 10 Issue Pages 18843-18854
Keywords Electromagnetic waveguides; Optical waveguides; Planar waveguides; Gratings; Surface waves; Surface impedance; Optical surface waves; Surface impedance; hollow-core waveguide; surface-relief grating
Abstract A rigorous Surface Impedance (SI) formulation for planar waveguides is presented. This modal technique splits the modal analysis of the waveguide in two steps. First, we obtain the modes characteristic equations as a function of the SI and, second, we need to obtain the surface impedance values using either analytical or numerical methods. We validate the technique by comparison with well-known analytical cases: the parallel-plate waveguide with losses and the dielectric slab waveguide. Then, we analyze an optical hollow-core waveguide defined by two high-contrast subwavelength gratings validating our results by comparison with reported values. Finally, we show the potential of our formulation with the analysis of a THz hollow-core waveguide defined by two surface-relief subwavelength gratings, including material losses in our formulation.
Address [Coves, Angela; Maestre, Haroldo] Univ Miguel Hernandez Elche, Dept Commun Engn I3E, Elche 03202, Spain, Email: angela.coves@umh.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-3536 ISBN Medium
Area Expedition Conference
Notes WOS:000760714900001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5139
Permanent link to this record
 

 
Author (up) Cranmer, K. et al; Sanz, V.
Title Publishing statistical models: Getting the most out of particle physics experiments Type Journal Article
Year 2022 Publication Scipost Physics Abbreviated Journal SciPost Phys.
Volume 12 Issue 1 Pages 037 - 55pp
Keywords
Abstract The statistical models used to derive the results of experimental analyses are of incredible scientific value and are essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing the full statistical models and discuss the technical developments that make this practical. By means of a variety of physics cases – including parton distribution functions, Higgs boson measurements, effective field theory interpretations, direct searches for new physics, heavy flavor physics, direct dark matter detection, world averages, and beyond the Standard Model global fits – we illustrate how detailed information on the statistical modelling can enhance the short- and long-term impact of experimental results.
Address [Cranmer, Kyle; Held, Alexander] NYU, New York, NY 10003 USA, Email: kyle.cranmer@nyu.edu;
Corporate Author Thesis
Publisher Scipost Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Medium
Area Expedition Conference
Notes WOS:000807448000032 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5255
Permanent link to this record
 

 
Author (up) Cui, Z.F.; Ding, M.; Morgado, J.M.; Raya, K.; Binosi, D.; Chang, L.; Papavassiliou, J.; Roberts, C.D.; Rodriguez-Quintero, J.; Schmidt, S.M.
Title Concerning pion parton distributions Type Journal Article
Year 2022 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 58 Issue 1 Pages 10 - 14pp
Keywords
Abstract Analyses of the pion valence-quark distribution function (DF), u(pi) (x; sigma), which explicitly incorporate the behaviour of the pion wave function prescribed by quantum chromodynamics (QCD), predict u(pi) (x similar or equal to 1; sigma) similar to (1 – x)(beta(sigma)), beta(sigma greater than or similar to m(p)) > 2, where mp is the proton mass. Nevertheless, more than forty years after the first experiment to collect data suitable for extracting the x similar or equal to 1 behaviour of up, the empirical status remains uncertain because some methods used to fit existing data return a result for up that violates this constraint. Such disagreement entails one of the following conclusions: the analysis concerned is incomplete; not all data being considered are a true expression of qualities intrinsic to the pion; or QCD, as it is currently understood, is not the theory of strong interactions. New, precise data are necessary before a final conclusion is possible. In developing these positions, we exploit a single proposition, viz. there is an effective charge which defines an evolution scheme for parton DFs that is all-orders exact. This proposition has numerous corollaries, which can be used to test the character of any DF, whether fitted or calculated.
Address [Cui, Z. -F.; Roberts, C. D.] Nanjing Univ, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China, Email: binosi@ectstar.eu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000746605900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5083
Permanent link to this record