Home | [11–20] << 21 22 23 24 25 26 27 28 29 30 >> [31–34] |
![]() |
Pompa, F., & Mena, O. (2024). How long do neutrinos live and how much do they weigh? Eur. Phys. J. C, 84(2), 134–12pp.
Abstract: The next-generation water Cherenkov Hyper-Kamiokande detector will be able to detect thousands of neutrino events from a galactic Supernova explosion via Inverse Beta Decay processes followed by neutron capture on Gadolinium. This superb statistics provides a unique window to set bounds on neutrino properties, as its mass and lifetime. We shall explore the capabilities of such a future detector, constraining the former two properties via the time delay and the flux suppression induced in the Supernovae neutrino time and energy spectra. Special attention will be devoted to the statistically sub-dominant elastic scattering induced events, normally neglected, which can substantially improve the neutrino mass bound via time delays. When allowing for a invisible decaying scenario, the 95% CL lower bound on tau/m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau /m$$\end{document} is almost one order of magnitude better than the one found with SN1987A neutrino events. Simultaneous limits can be set on both m nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\nu $$\end{document} and tau nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau {\nu }$$\end{document}, combining the neutrino flux suppression with the time-delay signature: the best constrained lifetime is that of nu 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu 1$$\end{document}, which has the richest electronic component. We find tau nu 1 greater than or similar to 4x105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau {\nu _1}\gtrsim 4\times 10<^>5$$\end{document} s at 95% CL. The tightest 95% CL bound on the neutrino mass we find is 0.34 eV, which is not only competitive with the tightest neutrino mass limits nowadays, but also comparable to future laboratory direct mass searches. Both mass and lifetime limits are independent on the mass ordering, which makes our results very robust and relevant.
|
Ramirez, H., Passaglia, S., Motohashi, H., Hu, W., & Mena, O. (2018). Reconciling tensor and scalar observables in G-inflation. J. Cosmol. Astropart. Phys., 04(4), 039–20pp.
Abstract: The simple m(2)phi(2) potential as an inflationary model is coming under increasing tension with limits on the tensor-to-scalar ratio r and measurements of the scalar spectral index n(s). Cubic Galileon interactions in the context of the Horndeski action can potentially reconcile the observables. However, we show that this cannot be achieved with only a constant Galileon mass scale because the interactions turn off too slowly, leading also to gradient instabilities after inflation ends. Allowing for a more rapid transition can reconcile the observables but moderately breaks the slow-roll approximation leading to a relatively large and negative running of the tilt alpha(s) that can be of order n(s) – 1. We show that the observables on CMB and large scale structure scales can be predicted accurately using the optimized slow-roll approach instead of the traditional slow-roll expansion. Upper limits on vertical bar alpha(s)vertical bar place a lower bound of r greater than or similar to 0.005 and, conversely, a given r places a lower bound on vertical bar alpha(s)vertical bar, both of which are potentially observable with next generation CMB and large scale structure surveys.
Keywords: inflation; cosmological parameters from CMBR
|
Razzaque, S., Jean, P., & Mena, O. (2010). High energy neutrinos from novae in symbiotic binaries: The case of V407 Cygni. Phys. Rev. D, 82(12), 123012–5pp.
Abstract: Detection of high-energy (>= 100 MeV) gamma rays by the Fermi Large Area Telescope from a nova in the symbiotic binary system V407 Cygni has opened the possibility of high-energy neutrino detection from this type of source. A thermonuclear explosion on the white dwarf surface sets off a nova shell in motion that expands and slows down in a dense surrounding medium provided by the red giant companion. Particles are accelerated in the shocks of the shell and interact with the surrounding medium to produce observed gamma rays. We show that proton-proton interaction, which is most likely responsible for producing gamma rays via neutral pion decay, produces >= 0:1 GeV neutrinos that can be detected by the current and future experiments at >= 10 GeV.
|
Reid, B. A., Verde, L., Jimenez, R., & Mena, O. (2010). Robust neutrino constraints by combining low redshift observations with the CMB. J. Cosmol. Astropart. Phys., 01(1), 003–21pp.
Abstract: We illustrate how recently improved low-redshift cosmological measurements can tighten constraints on neutrino properties. In particular we examine the impact of the assumed cosmological model on the constraints. We first consider the new HST H-0 = 74.2 +/- 3.6 measurement by Riess et al. (2009) and the sigma(8)(Omega(m)/0.25)(0.41) = 0.832 +/- 0.033 constraint from Rozo et al. (2009) derived from the SDSS maxBCG Cluster Catalog. In a ACDM model and when combined with WMAP5 constraints, these low-redshift measurements constrain Sigma m(v) < 0.4 eV at the 95% confidence level. This bound does not relax when allowing for the running of the spectral index or for primordial tensor perturbations. When adding also Supernovae and BAO constraints, we obtain a 95% upper limit of Sigma m(v) < 0.3eV. We test the sensitivity of the neutrino mass constraint to the assumed expansion history by both allowing a dark energy equation of state parameter w not equal -1 and by studying a model with coupling between dark energy and dark matter, which allows for variation in w, Omega(k), and dark coupling strength xi. When combining CMB, H-0 and the SDSS LRG halo power spectrum from Reid et al. 2009, we find that in this very general model, Sigma m(v) < 0.51 eV with 95% confidence. If we allow the number of relativistic species N-rel to vary in a ACDM model with Sigma m(v) = 0, we find N-rel = 3.76(-0.68)(+0.63)(+1.38 -1.21) for the 68% and 95% confidence intervals. We also report prior-independent constraints, which are in excellent agreement with the Bayesian constraints.
|
Safi, S., Farhang, M., Mena, O., & Di Valentino, E. (2024). Semiblind reconstruction of the history of effective number of neutrinos using CMB data. Phys. Rev. D, 110(10), 103513–7pp.
Abstract: We explore the possibility of redshift-dependent deviations in the contribution of relativistic degrees of freedom to the radiation budget of the cosmos, conventionally parametrized by the effective number of neutrinos Neff, from the predictions of the standard model. We expand the deviations 0Neff(z) in terms of top-hat functions and treat their amplitudes as the free parameters of the theory to be measured alongside the standard cosmological parameters by the Planck measurements of the cosmic microwave background (CMB) anisotropies and baryonic acoustic oscillations, as well as performing forecasts for futuristic CMB surveys such as PICO and CMB-S4. We reconstruct the history of 0Neff and find that with the current data the history is consistent with the standard scenario. Inclusion of the new degrees of freedom in the analysis increases H0 to 68.71 +/- 0.44, slightly reducing the Hubble tension. With the smaller forecasted errors on the 0Neff(z) parametrization modes from future CMB surveys, very accurate bounds are expected within the possible range of dark radiation models.
|