toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Di Valentino, E. et al; Mena, O. url  doi
openurl 
  Title Snowmass2021-Letter of interest cosmology intertwined I: Perspectives for the next decade Type Journal Article
  Year 2021 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 131 Issue Pages 102606 - 4pp  
  Keywords  
  Abstract The standard Lambda Cold Dark Matter cosmological model provides an amazing description of a wide range of astrophysical and astronomical data. However, there are a few big open questions, that make the standard model look like a first-order approximation to a more realistic scenario that still needs to be fully understood. In this Letter of Interest we will list a few important goals that need to be addressed in the next decade, also taking into account the current discordances present between the different cosmological probes, as the Hubble constant H-0 value, the sigma S-8(8) tension, and the anomalies present in the Planck results. Finally, we will give an overview of upgraded experiments and next-generation space-missions and facilities on Earth that will be of crucial importance to address all these questions.  
  Address [Di Valentino, Eleonora; Chluba, Jens; Harrison, Ian; Hart, Luke; Pace, Francesco] Univ Manchester, JBCA, Manchester, Lancs, England, Email: eleonora.di-valentino@durham.ac.uk  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000657813100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4856  
Permanent link to this record
 

 
Author (up) Di Valentino, E.; Gariazzo, S.; Mena, O.; Vagnozzi, S. url  doi
openurl 
  Title Soundness of dark energy properties Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 07 Issue 7 Pages 045 - 45pp  
  Keywords supernova type Ia – standard candles; dark energy experiments; cosmological parameters from CMBR; cosmological parameters from LSS  
  Abstract Type Ia Supernovae (SNeIa) used as standardizable candles have been instrumental in the discovery of cosmic acceleration, usually attributed to some form of dark energy (DE). Recent studies have raised the issue of whether intrinsic SNeIa luminosities might evolve with redshift. While the evidence for cosmic acceleration is robust to this possible systematic, the question remains of how much the latter can affect the inferred properties of the DE component responsible for cosmic acceleration. This is the question we address in this work. We use SNeIa distance moduli measurements from the Pantheon and JLA samples. We consider models where the DE equation of state is a free parameter, either constant or time-varying, as well as models where DE and dark matter interact, and finally a model-agnostic parametrization of effects due to modified gravity (MG). When SNeIa data are combined with Cosmic Microwave Background (CMB) temperature and polarization anisotropy measurements, we find strong degeneracies between parameters governing the SNeIa systematics, the DE parameters, and the Hubble constant H-0. These degeneracies significantly broaden the DE parameter uncertainties, in some cases leading to O(sigma) shifts in the central values. However, including low-redshift Baryon Acoustic Oscillation and Cosmic Chronometer measurements, as well as CMB lensing measurements, considerably improves the previous constraints, and the only remaining effect of the examined systematic is a less than or similar to 40% broadening of the uncertainties on the DE parameters. The constraints we derive on the MG parameters are instead basically unaffected by the systematic in question. We therefore confirm the overall soundness of dark energy properties.  
  Address [Di Valentino, Eleonora] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@mancher.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000551883400049 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4475  
Permanent link to this record
 

 
Author (up) Di Valentino, E.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Dark radiation sterile neutrino candidates after Planck data Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 018 - 13pp  
  Keywords cosmological neutrinos; neutrino properties; neutrino theory; dark energy theory  
  Abstract Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62(-0.48)(+0.50) at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming N-eff active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find m(nu,sterile)(eff) < 0.36 eV and 3.14 < N-eff < 4.15 at 95% CL, while using Planck+WP+HighL data in combination with the full shape of the galaxy power spectrum from the Baryon Oscillation Spectroscopic Survey BOSS Data Relase 9 measurements, we find that 3.30 < N-eff < 4.43 and m(nu,sterile)(eff) < 0.33 eV both at 95% CL with the three active neutrinos having the minimum mass allowed in the normal hierarchy scheme, i.e. Sigma m(nu) similar to 0.06 eV. These values compromise the viability of the (3 + 2) massive sterile neutrino models for the parameter region indicated by global fits of neutrino oscillation data. Within the (3 + 1) massive sterile neutrino scenario, we find m(nu,sterile)(eff) < 0.34 eV at 95% CL. While the existence of one extra sterile massive neutrino state is compatible with current oscillation data, the values for the sterile neutrino mass preferred by oscillation analyses are significantly higher than the current cosmological bound. We review as well the bounds on extended dark sectors with additional light species based on the latest Planck CMB observations.  
  Address [Di Valentino, Eleonora; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy, Email: eleonora.divalentino@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000327843900019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1672  
Permanent link to this record
 

 
Author (up) Diamanti, R.; Ando, S.; Gariazzo, S.; Mena, O.; Weniger, C. url  doi
openurl 
  Title Cold dark matter plus not-so-clumpy dark relics Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 008 - 17pp  
  Keywords cosmological parameters from CMBR; dark matter theory; dwarfs galaxies; particle physics – cosmology connection  
  Abstract Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f(ncdm) of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2 sigma limits for non-cold dark matter particles with masses in the range 1-10 keV are f(ncdm) <= 0.29 (0.23) for fermions (bosons), and for masses in the 10-100 keV range they are f(ncdm) <= 0.43 (0.45), respectively.  
  Address [Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph] Univ Amsterdam, Inst Phys, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: r.diamanti@uva.nl;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000403482400010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3174  
Permanent link to this record
 

 
Author (up) Diamanti, R.; Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Vincent, A.C. url  doi
openurl 
  Title Constraining dark matter late-time energy injection: decays and p-wave annihilations Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 017 - 24pp  
  Keywords dark matter theory; CMBR theory  
  Abstract We use the latest cosmic microwave background (CMB) observations to provide updated constraints on the dark matter lifetime as well as on p-wave suppressed annihilation cross sections in the 1 MeV to 1 TeV mass range. In contrast to scenarios with an s-wave dominated annihilation cross section, which mainly affect the CMB close to the last scattering surface, signatures associated with these scenarios essentially appear at low redshifts (z less than or similar to 50) when structure began to form, and thus manifest at lower multipoles in the CMB power spectrum. We use data from Planck, WMAP9, SPT and ACT, as well as Lyman-alpha measurements of the matter temperature at z similar to 4 to set a 95% confidence level lower bound on the dark matter lifetime of similar to 4 x 10(25) s for m(chi) = 100 MeV. This bound becomes lower by an order of magnitude at m(chi) = 1 TeV due to inefficient energy deposition into the inter-galactic medium. We also show that structure formation can enhance the effect of p-wave suppressed annihilation cross sections by many orders of magnitude with respect to the background cosmological rate, although even with this enhancement, CMB constraints are not yet strong enough to reach the thermal relic value of the cross section.  
  Address [Diamanti, Roberta; Mena, Olga; Palomares-Ruiz, Sergio; Vincent, Aaron C.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: R.Diamanti@uva.nl;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000332711400017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1732  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva