toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Lopez-Honorez, L.; Mena, O.; Rigolin, S. url  doi
openurl 
  Title Biases on cosmological parameters by general relativity effects Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 2 Pages 023511 - 12pp  
  Keywords  
  Abstract General relativistic corrections to the galaxy power spectrum appearing at the horizon scale, if neglected, may induce biases on the measured values of the cosmological parameters. In this paper, we study the impact of general relativistic effects on non standard cosmologies such as scenarios with a time dependent dark energy equation of state, with a coupling between the dark energy and the dark matter fluids or with non-Gaussianities. We then explore whether general relativistic corrections affect future constraints on cosmological parameters in the case of a constant dark energy equation of state and of non-Gaussianities. We find that relativistic corrections on the power spectrum are not expected to affect the foreseen errors on the cosmological parameters nor to induce large biases on them.  
  Address [Lopez-Honorez, L.] Univ Libre Bruxelles, Serv Phys Theor, Brussels, Belgium  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298990300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 867  
Permanent link to this record
 

 
Author (up) Lopez-Honorez, L.; Mena, O.; Villanueva-Domingo, P. url  doi
openurl 
  Title Dark matter microphysics and 21 cm observations Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 2 Pages 023522 - 12pp  
  Keywords  
  Abstract Dark matter interactions with massless or very light standard model particles, as photons or neutrinos, may lead to a suppression of the matter power spectrum at small scales and of the number of low mass haloes. Bounds on the dark matter scattering cross section with light degrees of freedom in such interacting dark matter (IDM) scenarios have been obtained from e.g., early time cosmic microwave background physics and large scale structure observations. Here we scrutinize dark matter microphysics in light of the claimed 21 cm EDGES 78 MHz absorption signal. IDM is expected to delay the 21 cm absorption features due to collisional damping effects. We identify the astrophysical conditions under which the existing constraints on the dark matter scattering cross section could be largely improved due to the IDM imprint on the 21 cm signal, providing also an explicit comparison to the WDM scenario.  
  Address [Lopez-Honorez, Laura] Univ Libre Bruxelles, Serv Phys Theor, CP225,Blvd Triomphe, B-1050 Brussels, Belgium, Email: llopezho@ulb.ac.be;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000456291400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3885  
Permanent link to this record
 

 
Author (up) Martinelli, M.; Lopez Honorez, L.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Future CMB cosmological constraints in a dark coupled universe Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 10 Pages 103534 - 7pp  
  Keywords  
  Abstract Cosmic microwave background satellite missions as the ongoing Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC, unless CMB lensing extraction is performed.  
  Address [Martinelli, Matteo; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278146700047 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 429  
Permanent link to this record
 

 
Author (up) Martinelli, M.; Melchiorri, A.; Mena, O.; Salvatelli, V.; Girones, Z. url  doi
openurl 
  Title Future constraints on the Hu-Sawicki modified gravity scenario Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 2 Pages 024006 - 7pp  
  Keywords  
  Abstract We present current and future constraints on the Hu and Sawicki modified gravity scenario. This model can reproduce a late time accelerated universe and evade Solar System constraints. While current cosmological data still allows for distinctive deviations from the cosmological constant picture, future measurements of the growth of structure combined with supernova Ia luminosity distance data will greatly improve present constraints.  
  Address [Martinelli, Matteo; Melchiorri, Alessandro; Salvatelli, Valentina] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298990200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 870  
Permanent link to this record
 

 
Author (up) Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.; Witte, S.J. url  doi
openurl 
  Title Constraining the primordial black hole abundance with 21-cm cosmology Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 4 Pages 043540 - 23pp  
  Keywords  
  Abstract The discoveries of a number of binary black hole mergers by LIGO and VIRGO have reinvigorated the interest that primordial black holes (PBHs) of tens of solar masses could contribute non-negligibly to the dark matter energy density. Should even a small population of PBHs with masses greater than or similar to O(M-circle dot) exist, they could profoundly impact the properties of the intergalactic medium and provide insight into novel processes at work in the early Universe. We demonstrate here that observations of the 21-cm transition in neutral hydrogen during the epochs of reionization and cosmic dawn will likely provide one of the most stringent tests of solar mass PBHs. In the context of 21-cm cosmology, PBHs give rise to three distinct observable effects: (i) the modification to the primordial power spectrum (and thus also the halo mass function) induced by Poisson noise, (ii) a uniform heating and ionization of the intergalactic medium via x-rays produced during accretion, and (iii) a local modification to the temperature and density of the ambient medium surrounding isolated PBHs. Using a four-parameter astrophysical model, we show that experiments like SKA and HERA could potentially improve upon existing constraints derived using observations of the cosmic microwave background by more than 1 order of magnitude.  
  Address [Mena, Olga; Palomares-Ruiz, Sergio; Villanueva-Domingo, Pablo; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000483047300003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4122  
Permanent link to this record
 

 
Author (up) Mena, O.; Palomares-Ruiz, S.; Vincent, A.C. url  doi
openurl 
  Title Flavor Composition of the High-Energy Neutrino Events in IceCube Type Journal Article
  Year 2014 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 113 Issue 9 Pages 091103 - 5pp  
  Keywords  
  Abstract The IceCube experiment has recently reported the observation of 28 high-energy (> 30 TeV) neutrino events, separated into 21 showers and 7 muon tracks, consistent with an extraterrestrial origin. In this Letter, we compute the compatibility of such an observation with possible combinations of neutrino flavors with relative proportion (alpha(e:)alpha(mu):alpha tau)(circle plus). Although the 7: 21 track-to-shower ratio is naively favored for the canonical (1:1:1)(circle plus) at Earth, this is not true once the atmospheric muon and neutrino backgrounds are properly accounted for. We find that, for an astrophysical neutrino E-2 energy spectrum, (1:1:1)(circle plus). at Earth is disfavored at 81% C. L. If this proportion does not change, 6 more years of data would be needed to exclude (1:1:1)(circle plus) at Earth at 3 sigma C.L. Indeed, with the recently released 3-yr data, that flavor composition is excluded at 92% C. L. The best fit is obtained for (1:0:0)(circle plus). at Earth, which cannot be achieved from any flavor ratio at sources with averaged oscillations during propagation. If confirmed, this result would suggest either a misunderstanding of the expected background events or a misidentification of tracks as showers, or even more compellingly, some exotic physics which deviates from the standard scenario.  
  Address [Mena, Olga; Palomares-Ruiz, Sergio; Vincent, Aaron C.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: omena@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341292800005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1920  
Permanent link to this record
 

 
Author (up) Mena, O.; Razzaque, S. url  doi
openurl 
  Title Hints of an axion-like particle mixing in the GeV gamma-ray blazar data? Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 023 - 12pp  
  Keywords axions; active galactic nuclei  
  Abstract Axion-Like Particles (ALPs), if exist in nature, are expected to mix with photons in the presence of an external magnetic field. The energy range of photons which undergo strong mixing with ALPs depends on the ALP mass, on its coupling with photons as well as on the external magnetic field and particle density configurations. Recent observations of blazars by the Fermi Gamma-Ray Space Telescope in the 0.1-300 GeV energy range show a break in their spectra in the 1-10 GeV range. We have modeled this spectral feature for the flat-spectrum radio quasar 3C454.3 during its November 2010 outburst, assuming that a significant fraction of the gamma rays convert to ALPs in the large scale jet of this blazar. Using theoretically motivated models for the magnetic field and particle density con figurations in the kiloparsec scale jet, outside the broad-line region, we find an ALP mass m(a) similar to (1 – 3).10(-7) eV and coupling g(a gamma) similar to (1 – 3).10(-10) GeV-1 after performing an illustrative statistical analysis of spectral data in four different epochs of emission. The precise values of m(a) and g(a gamma) depend weakly on the assumed particle density con figuration and are consistent with the current experimental bounds on these quantities. We apply this method and ALP parameters found from fitting 3C454.3 data to another flat-spectrum radio quasar PKS1222+216 (4C+21.35) data up to 400 GeV, as a consistency check, and found good fit. We find that the ALP-photon mixing effect on the GeV spectra may not be washed out for any reasonable estimate of the magnetic field in the intergalactic media.  
  Address [Mena, Olga] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: omena@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000327843900024 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1673  
Permanent link to this record
 

 
Author (up) Mena, O.; Razzaque, S.; Villaescusa-Navarro, F. url  doi
openurl 
  Title Signatures of photon and axion-like particle mixing in the gamma-ray burst jet Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 030 - 16pp  
  Keywords axions; magnetic fields; gamma ray bursts theory; gamma ray burst experiments  
  Abstract Photons couple to Axion-Like Particles (ALPs) or more generally to any pseudo Nambu-Goldstone boson in the presence of an external electromagnetic field. Mixing between photons and ALPs in the strong magnetic field of a Gamma-Ray Burst (GRB) jet during the prompt emission phase can leave observable imprints on the gamma-ray polarization and spectrum. Mixing in the intergalactic medium is not expected to modify these signatures for ALP mass > 10(-14) eV and/or for < nG magnetic field. We show that the depletion of photons due to conversion to ALPs changes the linear degree of polarization from the values predicted by the synchrotron model of gamma ray emission. We also show that when the magnetic field orientation in the propagation region is perpendicular to the field orientation in the production region, the observed synchrotron spectrum becomes steeper than the theoretical prediction and as detected in a sizable fraction of GRB sample. Detection of the correlated polarization and spectral signatures from these steep-spectrum GRBs by gamma-ray polarimeters can be a very powerful probe to discover ALPs. Measurement of gamma-ray polarization from GRBs in general, with high statistics, can also be useful to search for ALPs.  
  Address [Mena, Olga; Villaescusa-Navarro, F.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: omena@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287859800031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 559  
Permanent link to this record
 

 
Author (up) Mosbech, M.R.; Boehm, C.; Hannestad, S.; Mena, O.; Stadler, J.; Wong, Y.Y.Y. url  doi
openurl 
  Title The full Boltzmann hierarchy for dark matter-massive neutrino interactions Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 066 - 31pp  
  Keywords cosmological perturbation theory; dark matter theory; neutrino properties; particle physics – cosmology connection  
  Abstract The impact of dark matter-neutrino interactions on the measurement of the cosmological parameters has been investigated in the past in the context of massless neutrinos exclusively. Here we revisit the role of a neutrino-dark matter coupling in light of ongoing cosmological tensions by implementing the full Boltzmann hierarchy for three massive neutrinos. Our tightest 95% CL upper limit on the strength of the interactions, parameterized via u(chi) = sigma(0)/sigma(Th) (m(chi)/100GeV)(-1), is u(chi) <= 3.34 . 10(-4), arising from a combination of Planck TTTEEE data, Planck lensing data and SDSS BAO data. This upper bound is, as expected, slightly higher than previous results for interacting massless neutrinos, due to the correction factor associated with neutrino masses. We find that these interactions significantly relax the lower bounds on the value of sigma 8 that is inferred in the context of Lambda CDM from the Planck data, leading to agreement within 1-2 sigma with weak lensing estimates of sigma 8, as those from KiDS1000. However, the presence of these interactions barely affects the value of the Hubble constant H-0.  
  Address [Mosbech, Markus R.; Boehm, Celine] Univ Sydney, Sch Phys, Camperdown, NSW 2006, Australia, Email: mmos6302@uni.sydney.edu.au;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636717400061 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4783  
Permanent link to this record
 

 
Author (up) Nunes, R.C.; Vagnozzi, S.; Kumar, S.; Di Valentino, E.; Mena, O. url  doi
openurl 
  Title New tests of dark sector interactions from the full-shape galaxy power spectrum Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 12 Pages 123506 - 18pp  
  Keywords  
  Abstract We explore the role of redshift-space galaxy clustering data in constraining nongravitational interactions between dark energy (DE) and dark matter (DM), for which state-of-the-art limits have so far been obtained from late-time background measurements. We use the joint likelihood for prereconstruction full-shape (FS) galaxy power spectrum and postreconstruction Baryon Acoustic Oscillation (BAO) measurements from the BOSS DR12 sample, alongside Cosmic Microwave Background (CMB) data from Planck: from this dataset combination we infer H0 1/4 68.02+0.49 and the 2?? lower limit ?? > ???0.12, among the strongest limits ever reported on the DM-DE coupling strength ?? for the particular model considered. Contrary to what has been observed for the ??CDM model and simple extensions thereof, we find that the CMB + FS combination returns tighter constraints compared to the CMB + BAO one, suggesting that there is valuable additional information contained in the broadband of the power spectrum. We test this finding by running additional CMB-free analyses and removing sound horizon information, and discuss the important role of the equality scale in setting constraints on DM-DE interactions. Our results reinforce the critical role played by redshift-space galaxy clustering measurements in the epoch of precision cosmology, particularly in relation to tests of nonminimal dark sector extensions of the ??CDM model.  
  Address [Nunes, Rafael C.] Univ Fed Rio Grande Do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil, Email: rafadcnunes@gmail.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000813312800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5269  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva