toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Gomez-Cadenas, J.J.; Martin-Albo, J.; Muñoz Vidal, J.; Pena-Garay, C. url  doi
openurl 
  Title Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 043 - 17pp  
  Keywords neutrino masses from cosmology; double beta decay  
  Abstract The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Sigma m(nu) = (0.32 +/- 0.11) eV. This result, if con firmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m(beta beta) involved in neutrinoless double beta decay (beta beta 0 nu) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based beta beta 0 nu experiments, on the double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg.year, could already have a sizeable opportunity to observe beta beta 0 nu events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton.year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.  
  Address CSIC, Inst Fis Corpuscular, IFIC, Valencia 46090, Spain, Email: gomez@mail.cern.ch;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000316989200044 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1434  
Permanent link to this record
 

 
Author (up) Jimenez, R.; Kitching, T.; Pena-Garay, C.; Verde, L. url  doi
openurl 
  Title Can we measure the neutrino mass hierarchy in the sky? Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 035 - 14pp  
  Keywords cosmological neutrinos; neutrino masses from cosmology; power spectrum; gravitational lensing  
  Abstract Cosmological probes are steadily reducing the total neutrino mass window, resulting in constraints on the neutrino-mass degeneracy as the most significant outcome. In this work we explore the discovery potential of cosmological probes to constrain the neutrino hierarchy, and point out some subtleties that could yield spurious claims of detection. This has an important implication for next generation of double beta decay experiments, that will be able to achieve a positive signal in the case of degenerate or inverted hierarchy of Majorana neutrinos. We find that cosmological experiments that nearly cover the whole sky could in principle distinguish the neutrino hierarchy by yielding 'substantial' evidence for one scenario over the another, via precise measurements of the shape of the matter power spectrum from large scale structure and weak gravitational lensing.  
  Address [Jimenez, Raul; Verde, Licia] Univ Barcelona, ICREA, E-08028 Barcelona, Spain, Email: raul.jimenez@icc.ub.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279490800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 418  
Permanent link to this record
 

 
Author (up) Jimenez, R.; Pena-Garay, C.; Verde, L. url  doi
openurl 
  Title Is it possible to explore Peccei-Quinn axions from frequency-dependence radiation dimming? Type Journal Article
  Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 703 Issue 3 Pages 232-236  
  Keywords Axion; CF; White dwarf  
  Abstract We explore how the Peccei-Quinn (PQ) axion parameter space can be constrained by the frequency-dependence dimming of radiation from astrophysical objects. To do so we perform accurate calculations of photon-axion conversion in the presence of a variable magnetic field. We propose several tests where the PQ axion parameter space can be explored with current and future astronomical surveys: the observed spectra of isolated neutron stars, occultations of background objects by white dwarfs and neutron stars, the light-curves of eclipsing binaries containing a white dwarf. We find that the lack of dimming of the light-curve of a detached eclipsing white dwarf binary recently observed, leads to relevant constraints on the photon-axion conversion. Current surveys designed for Earth-like planet searches are well matched to strengthen and improve the constraints on the PQ axion using astrophysical objects radiation dimming.  
  Address [Jimenez, R; Verde, L] Univ Barcelona IEEC UB, ICREA & ICC, Barcelona 08028, Spain, Email: jimenez@icc.ub.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295198300005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 779  
Permanent link to this record
 

 
Author (up) Minakata, H.; Pena-Garay, C. url  doi
openurl 
  Title Solar Neutrino Observables Sensitive to Matter Effects Type Journal Article
  Year 2012 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2012 Issue Pages 349686 - 15pp  
  Keywords  
  Abstract We discuss constraints on the coefficient A(MSW) which is introduced to simulate the effect of weaker or stronger matter potential for electron neutrinos with the current and future solar neutrino data. The currently available solar neutrino data leads to a bound A(MSW) = 1.47(+0.54)(-0.42)((-0.82)(+1.88)) at 1 sigma (3 sigma) CL, which is consistent with the Standard Model prediction A(MSW) = 1. For weaker matter potential (A(MSW) < 1), the constraint which comes from the flat B-8 neutrino spectrum is already very tight, indicating the evidence for matter effects. However for stronger matter potential (A(MSW) > 1), the bound is milder and is dominated by the day-night asymmetry of B-8 neutrino flux recently observed by Super-Kamiokande. Among the list of observables of ongoing and future solar neutrino experiments, we find that (1) an improved precision of the day-night asymmetry of B-8 neutrinos, (2) precision measurements of the low-energy quasi-monoenergetic neutrinos, and (3) the detection of the upturn of the B-8 neutrino spectrum at low energies are the best choices to improve the bound on A(MSW).  
  Address [Minakata, H.] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo 1920397, Japan, Email: hisakazu.minakata@gmail.com  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corporation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311152600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1234  
Permanent link to this record
 

 
Author (up) Norena, J.; Verde, L.; Jimenez, R.; Pena-Garay, C.; Gomez, C. url  doi
openurl 
  Title Cancelling out systematic uncertainties Type Journal Article
  Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 419 Issue 2 Pages 1040-1050  
  Keywords methods: statistical; cosmology: theory  
  Abstract We present a method to minimize, or even cancel out, the nuisance parameters affecting a measurement. Our approach is general and can be applied to any experiment or observation where systematic errors are a concern e.g. are larger than statistical errors. We compare it with the Bayesian technique used to deal with nuisance parameters: marginalization, and show how the method compares and improves by avoiding biases. We illustrate the method with several examples taken from the astrophysics and cosmology world: baryonic acoustic oscillations (BAOs), cosmic clocks, Type Ia supernova (SNIa) luminosity distance, neutrino oscillations and dark matter detection. By applying the method we not only recover some known results but also find some interesting new ones. For BAO experiments we show how to combine radial and angular BAO measurements in order to completely eliminate the dependence on the sound horizon at radiation drag. In the case of exploiting SNIa as standard candles we show how the uncertainty in the luminosity distance by a second parameter modelled as a metallicity dependence can be eliminated or greatly reduced. When using cosmic clocks to measure the expansion rate of the universe, we demonstrate how a particular combination of observables nearly removes the metallicity dependence of the galaxy on determining differential ages, thus removing the agemetallicity degeneracy in stellar populations. We hope that these findings will be useful in future surveys to obtain robust constraints on the dark energy equation of state.  
  Address [Norena, Jorge; Verde, Licia; Jimenez, Raul] Univ Barcelona IEEC UB, ICREA, Barcelona 08028, Spain, Email: jorge.norena@icc.ub.edu  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298482300011 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 890  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva