toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Drach, V.; Fritzsch, P.; Rago, A.; Romero-Lopez, F. url  doi
openurl 
  Title Singlet channel scattering in a composite Higgs model on the lattice Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 1 Pages 47 - 10pp  
  Keywords  
  Abstract We present the first calculation of the scattering amplitude in the singlet channel beyond QCD. The calculation is performed in SU(2) gauge theory with N-f = 2 fundamental Dirac fermions and based on a finite-volume scattering formalism. The theory exhibits a SU (4) -> Sp(4) chiral symmetry breaking pattern that is used to design minimal composite Higgs models currently tested at the LHC. Our results show that, for the range of underlying fermion mass considered, the lowest flavour singlet state is stable.  
  Address [Drach, Vincent; Fritzsch, Patrick; Rago, Antonio] Univ Plymouth, Ctr Math Sci, Plymouth PL4 8AA, Devon, England, Email: fernando.romero@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000744537400008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5097  
Permanent link to this record
 

 
Author (up) Fischer, M.; Kostrzewa, B.; Liu, L.M.; Romero-Lopez, F.; Ueding, M.; Urbach, C. url  doi
openurl 
  Title Scattering of two and three physical pions at maximal isospin from lattice QCD Extended Twisted Mass Collaboration Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 5 Pages 436 - 19pp  
  Keywords  
  Abstract We present the first direct N-f = 2 lattice QCD computation of two- and three-pi(+) scattering quantities that includes an ensemble at the physical point. We study the quark mass dependence of the two-pion phase shift, and the three-particle interaction parameters. We also compare to phenomenology and chiral perturbation theory (ChPT). In the two-particle sector, we observe good agreement to the phenomenological fits in s- and d-wave, and obtain M(pi)a(0) = -0.0481(86) at the physical point from a direct computation. In the three-particle sector, we observe reasonable agreement at threshold to the leading order chiral expansion, i.e. a mildly attractive three-particle contact term. In contrast, we observe that the energy-dependent part of the three-particle quasilocal scattering quantity is not well described by leading order ChPT.  
  Address [Fischer, Matthias; Ueding, Martin; Urbach, Carsten] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: fernando.romero@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000680425500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4900  
Permanent link to this record
 

 
Author (up) Garofalo, M.; Romero-Lopez, F.; Rusetsky, A.; Urbach, C. url  doi
openurl 
  Title Testing a new method for scattering in finite volume in the phi(4) theory Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 11 Pages 1034 - 5pp  
  Keywords  
  Abstract We test an alternative proposal by Bruno and Hansen (J High Energy Phys 2021(6), https://doi.org/10.1007/JHEP06(2021)043, 2021) to extract the scattering length from lattice simulations in a finite volume. For this, we use a scalar phi(4) theory with two mass nondegenerate particles and explore various strategies to implement this new method. We find that the results are comparable to those obtained from the Luscher method, with somewhat smaller statistical uncertainties at larger volumes.  
  Address [Garofalo, Marco; Rusetsky, Akaki; Urbach, Carsten] Rheinische Friedrich Wilhelms Univ Bonn, HISKP Theory, Nussallee 14-16, D-53115 Bonn, Germany, Email: garofalo@hiskp.uni-bonn.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000722881700006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5035  
Permanent link to this record
 

 
Author (up) Hansen, M.T.; Romero-Lopez, F.; Sharpe, S.R. url  doi
openurl 
  Title Decay amplitudes to three hadrons from finite-volume matrix elements Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 113 - 44pp  
  Keywords Lattice QCD; Kaon Physics  
  Abstract We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Luscher relation for two-particle decays and provides a strategy for extracting three-hadron decay amplitudes using lattice QCD. Unlike for two particles, even in the simplest approximation, one must solve integral equations to obtain the physical decay amplitude, a consequence of the nontrivial finite-state interactions. We first derive the result in a simplified theory with three identical particles, and then present the generalizations needed to study phenomenologically relevant three-pion decays. The specific processes we discuss are the CP-violating K -> 3 pi weak decay, the isospin-breaking eta -> 3 pi QCD transition, and the electromagnetic gamma (*) -> 3 pi amplitudes that enter the calculation of the hadronic vacuum polarization contribution to muonic g – 2.  
  Address [Hansen, Maxwell T.] Univ Edinburgh, Sch Phys & Astron, Higgs Ctr Theoret Phys, Edinburgh EH9 3FD, Midlothian, Scotland, Email: maxwell.hansen@ed.ac.uk;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000640574400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4789  
Permanent link to this record
 

 
Author (up) Hansen, M.T.; Romero-Lopez, F.; Sharpe, S.R. url  doi
openurl 
  Title Generalizing the relativistic quantization condition to include all three-pion isospin channels Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 047 - 49pp  
  Keywords Lattice QCD; Scattering Amplitudes  
  Abstract We present a generalization of the relativistic, finite-volume, three-particle quantization condition for non-identical pions in isosymmetric QCD. The resulting formalism allows one to use discrete finite-volume energies, determined using lattice QCD, to constrain scattering amplitudes for all possible values of two- and three-pion isospin. As for the case of identical pions considered previously, the result splits into two steps: the first defines a non-perturbative function with roots equal to the allowed energies, E-n(L), in a given cubic volume with side-length L. This function depends on an intermediate three-body quantity, denoted K-df;3, which can thus be constrained from lattice QCD input. The second step is a set of integral equations relating K-df,K-3 to the physical scattering amplitude, M-3. Both of the key relations, E-n(L) <-> K-df,K-3 and K-df,K-3 <-> M-3, are shown to be block-diagonal in the basis of definite three-pion isospin, I-pi pi pi, so that one in fact recovers four independent relations, corresponding to I-pi pi pi = 0; 1; 2; 3. We also provide the generalized threshold expansion of K-df,K-3 for all channels, as well as parameterizations for all three-pion resonances present for I-pi pi pi = 0 and I-pi pi pi = 1. As an example of the utility of the generalized formalism, we present a toy implementation of the quantization condition for I-pi pi pi = 0, focusing on the quantum numbers of the omega and h(1) resonances.  
  Address [Hansen, Maxwell T.] Univ Geneva, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: maxwell.hansen@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000551981200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4474  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva