toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Sekihara, T.; Yamagata-Sekihara, J.; Jido, D.; Kanada-En'yo, Y. url  doi
openurl 
  Title Branching ratios of mesonic and nonmesonic antikaon absorptions in the nuclear medium Type Journal Article
  Year 2012 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 86 Issue 6 Pages 065205 - 17pp  
  Keywords  
  Abstract The branching ratios of K- absorption in nuclear matter are theoretically investigated in order to understand the mechanism of K- absorption into nuclei. For this purpose mesonic and nonmesonic absorption potentials are evaluated as functions of nuclear density, the kaon momentum, and energy from one- and two-body K- self-energy, respectively. By using a chiral unitary approach for the s-wave (K) over bar N amplitude we find that both the mesonic and nonmesonic absorption potentials are dominated by the Lambda(1405) contributions. The fraction of the mesonic and nonmesonic absorptions are evaluated to be respectively about 70% and 30% at the saturation density almost independently of the kaon momentum. We also observe different behavior of the branching ratios to pi(+)Sigma(-) and pi(-)Sigma(+) channels in mesonic absorption due to the interference between Lambda(1405) and the I = 1 nonresonant background, which is consistent with experimental results. The nonmesonic absorption ratios [Lambda p]/[Sigma(0)p] and [Lambda n]/[Sigma(0)n] are about unity while [Sigma(+)n]/[Sigma(0)p] and [Sigma(-) p]/[Sigma(0)n] are about 2 due to the Lambda(1405) dominance in absorption. Taking into account the kaon momenta and energies, the absorption potentials become weaker due to the downward shift of the initial K- N two-body energy, but this does not drastirally change the nonmesonic fraction. The Sigma(1385) contribution in the p-wave (K) over bar N amplitude is examined and found to be very small compared to the Lambda(1405) contribution in slow K- absorption.  
  Address [Sekihara, Takayasu] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000312293900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1270  
Permanent link to this record
 

 
Author (up) Tani, A.; Ikeno, N.; Jido, D.; Nagahiro, H.; Fujioka, H.; Itahashi, K.; Hirenzaki, S. url  doi
openurl 
  Title Structure of double pionic atoms Type Journal Article
  Year 2021 Publication Progress of Theoretical and Experimental Physics Abbreviated Journal Prog. Theor. Exp. Phys.  
  Volume 2021 Issue 3 Pages 033D02 - 16pp  
  Keywords  
  Abstract We study theoretically the structure of double pionic atoms, in which two negatively charged pions (pi(-)) are bound in the atomic orbits. The double pionic atom is considered to be an interesting system from the point of view of the multi-bosonic systems. In addition, it could be possible to deduce valuable information on the isospin I = 2 pi pi interaction and the pionnucleus strong interaction. In this paper, we take into account the pi pi strong and electromagnetic interactions, and evaluate the effects on the binding energies by perturbation theory for the double pionic atoms in heavy nuclei. We investigate several combinations of two pionic states and find that the order of magnitude of the energy shifts due to the pi pi interaction is around 10 keV for the strong interaction and around 100 keV for the electromagnetic interaction for the ground states.  
  Address [Tani, Akari; Ikeno, Natsumi] Tottori Univ, Dept Agr Life & Environm Sci, Tottori 6808551, Japan, Email: ikeno@tottori-u.ac.jp  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-3911 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000642331700010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4802  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva