toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Escudero, M.; Rius, N.; Sanz, V. url  doi
openurl 
  Title Sterile neutrino portal to Dark Matter II: exact dark symmetry Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 6 Pages 397 - 11pp  
  Keywords  
  Abstract We analyze a simple extension of the standard model (SM) with a dark sector composed of a scalar and a fermion, both singlets under the SM gauge group but charged under a dark sector symmetry group. Sterile neutrinos, which are singlets under both groups, mediate the interactions between the dark sector and the SM particles, and generate masses for the active neutrinos via the seesaw mechanism. We explore the parameter space region where the observed Dark Matter relic abundance is determined by the annihilation into sterile neutrinos, both for fermion and scalar Dark Matter particles. The scalar Dark Matter case provides an interesting alternative to the usual Higgs portal scenario. We also study the constraints from direct Dark Matter searches and the prospects for indirect detection via sterile neutrino decays to leptons, which may be able to rule out Dark Matter masses below and around 100 GeV.  
  Address [Escudero, Miguel; Rius, Nuria] Univ Valencia, CSIC, Dept Fis Teor, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: miguel.escudero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000403504200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3171  
Permanent link to this record
 

 
Author (up) Escudero, M.; Rius, N.; Sanz, V. url  doi
openurl 
  Title Sterile neutrino portal to Dark Matter I: the U(1)(B-L) case Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 045 - 27pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract In this paper we explore the possibility that the sterile neutrino and Dark Matter sectors in the Universe have a common origin. We study the consequences of this assumption in the simple case of coupling the dark sector to the Standard Model via a global U(1)(B-L), broken down spontaneously by a dark scalar. This dark scalar provides masses to the dark fermions and communicates with the Higgs via a Higgs portal coupling. We find an interesting interplay between Dark Matter annihilation to dark scalars – the CP-even that mixes with the Higgs and the CP-odd which becomes a Goldstone boson, the Majoron and heavy neutrinos, as well as collider probes via the coupling to the Higgs. Moreover, Dark Matter annihilation into sterile neutrinos and its subsequent decay to gauge bosons and quarks, charged leptons or neutrinos lead to indirect detection signatures which are close to current bounds on the gamma ray flux from the galactic center and dwarf galaxies.  
  Address [Escudero, Miguel; Rius, Nuria] Univ Valencia, Dept Fis Teor, CSIC, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: miguel.escudero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000394747600008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3018  
Permanent link to this record
 

 
Author (up) Escudero, M.; Witte, S.J.; Rius, N. url  doi
openurl 
  Title The dispirited case of gauged U(1)(B-L) dark matter Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 190 - 30pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM  
  Abstract We explore the constraints and phenomenology of possibly the simplest scenario that could account at the same time for the active neutrino masses and the dark matter in the Universe within a gauged U(1)(B-L) symmetry, namely right-handed neutrino dark matter. We find that null searches from lepton and hadron colliders require dark matter with a mass below 900 GeV to annihilate through a resonance. Additionally, the very strong constraints from high-energy dilepton searches fully exclude the model for 150 GeV < m(z') < 3 TeV. We further explore the phenomenology in the high mass region (i.e. masses greater than or similar to O(1) TeV) and highlight theoretical arguments, related to the appearance of a Landau pole or an instability of the scalar potential, disfavoring large portions of this parameter space. Collectively, these considerations illustrate that a minimal extension of the Standard Model via a local U(1)(B-L) symmetry with a viable thermal dark matter candidate is difficult to achieve without fine-tuning. We conclude by discussing possible extensions of the model that relieve tension with collider constraints by reducing the gauge coupling required to produce the correct relic abundance.  
  Address [Escudero, Miguel] Univ Valencia, CSIC, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: Miguel.Escudero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000443008100006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3706  
Permanent link to this record
 

 
Author (up) Folgado, M.G.; Donini, A.; Rius, N. url  doi
openurl 
  Title Spin-dependence of gravity-mediated dark matter in warped extra-dimensions Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 3 Pages 197 - 13pp  
  Keywords  
  Abstract We study the possibility that Dark Matter (DM) particles of spin 0, 1/2 or 1 may interact gravitationally with Standard Model (SM) particles within the framework of a warped Randall-Sundrum (RS) model. Both the Dark Matter and the Standard Model particles are assumed to be confined to the infra-red (IR) brane and only interchange Kaluza-Klein excitations of the graviton and the radion (adopting the Goldberger-Wise mechanism to stabilize the size of the extra-dimension). We analyze the different DM annihilation channels and find that the presently observed Dark Matter relic abundance, Omega DM, can be obtained within the freeze-out mechanism for DM particles of all considered spins. This extends our first work concerning scalar DM in RS scenarios (Folgado et al., in JHEP 01:161. https://doi.org/10.1007/JHEP01(2020)161, 2020) and put it on equal footing with our second work in which we studied DM particles of spin 0, 1/2 and 1 in the framework of the Clockwork/Linear Dilaton (CW/LD) model (Folgado et al., in JHEP 20:036. https://doi.org/10.1007/JHEP04(2020)036, 2020). We study the region of the model parameter space for which Omega DM is achieved and compare it with the different experimental and theoretical bounds. We find that, for DM particles mass mDM is an element of [1,15] TeV, most of the parameter space is excluded by the current constraints or will be excluded by the LHC Run III or by the LHC upgrade, the HL-LHC. The observed DM relic abundance can still be achieved for DM masses mDM is an element of [4,15] TeV and mG1<10 TeV for scalar and vector boson Dark Matter. On the other hand, for spin 1/2 fermion Dark Matter, only a tiny region with mDM<is an element of>[4,15] TeV, mG1 is an element of [5,10] TeV and Lambda >mG1 is compatible with theoretical and experimental bounds. We have also studied the impact of the radion in the phenomenology, finding that it does not modify significantly the allowed region for DM particles of any spin (differently from the CW/LD case, where its impact was quite significant in the case of scalar DM). We, eventually, briefly compare results in RS with those obtained in the CW/LD model.  
  Address [Folgado, Miguel G.] Univ Valencia, CSIC, Dept Fis Teor, C Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: migarfol@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000625431000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4767  
Permanent link to this record
 

 
Author (up) Folgado, M.G.; Donini, A.; Rius, N. url  doi
openurl 
  Title Gravity-mediated scalar Dark Matter in warped extra-dimensions Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 161 - 39pp  
  Keywords Phenomenology of Field Theories in Higher Dimensions  
  Abstract We revisit the case of scalar Dark Matter interacting just gravitationally with the Standard Model (SM) particles in an extra-dimensional Randall-Sundrum scenario. We assume that both, the Dark Matter and the Standard Model, are localized in the TeV brane and only interact via gravitational mediators, namely the graviton Kaluza-Klein modes and the radion. We analyze in detail the dark matter annihilation channel into two on-shell KK-gravitons, and contrary to previous studies which overlooked this process, we find that it is possible to obtain the correct relic abundance for dark matter masses in the range [1, 10] TeV even after taking into account the strong bounds from LHC Run II. We also consider the impact of the radion contribution (virtual exchange leading to SM final states as well as on-shell production), which does not significantly change our results. Quite interestingly, a sizeable part of the currently allowed parameter space could be tested by LHC Run III and by the High-Luminosity LHC.  
  Address [Folgado, Miguel G.] Univ Valencia, CSIC, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: migarfol@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000513955300002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4292  
Permanent link to this record
 

 
Author (up) Folgado, M.G.; Donini, A.; Rius, N. url  doi
openurl 
  Title Gravity-mediated dark matter in clockwork/linear dilaton extra-dimensions Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 036 - 46pp  
  Keywords Phenomenology of Field Theories in Higher Dimensions; Strings and branes phenomenology  
  Abstract We study for the first time the possibility that Dark Matter (represented by particles with spin 0, 1/2 or 1) interacts gravitationally with Standard Model particles in an extra-dimensional Clockwork/Linear Dilaton model. We assume that both, the Dark Matter and the Standard Model, are localized in the IR-brane and only interact via gravitational mediators, namely the Kaluza-Klein (KK) graviton and the radion/KK-dilaton modes. We analyse in detail the Dark Matter annihilation channel into Standard Model particles and into two on-shell Kaluza-Klein towers (either two KK-gravitons, or two radion/KK- dilatons, or one of each), finding that it is possible to obtain the observed relic abundance via thermal freeze-out for Dark Matter masses in the range m(DM) is an element of [1, 15] TeV for a 5- dimensional gravitational scale M-5 ranging from 5 to a few hundreds of TeV, even after taking into account the bounds from LHC Run II and irrespectively of the DM particle spin.  
  Address [Folgado, Miguel G.] Univ Valencia, Dept Fis Teor, CSIC, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: migarfol@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000526531300002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4375  
Permanent link to this record
 

 
Author (up) Folgado, M.G.; Gomez-Vargas, G.A.; Rius, N.; Ruiz de Austri, R. url  doi
openurl 
  Title Probing the sterile neutrino portal to Dark Matter with gamma rays Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages 002 - 20pp  
  Keywords dark matter theory; particle physics – cosmology connection; neutrino theory  
  Abstract Sterile neutrinos could provide a link between the Standard Model particles and a dark sector, besides generating active neutrino masses via the seesaw mechanism type I. We show that, if dark matter annihilation into sterile neutrinos determines its observed relic abundance, it is possible to explain the Galactic Center gamma-ray excess reported by the Fermi-LAT Collaboration as due to an astrophysical component plus dark matter annihilations. We observe that sterile neutrino portal to dark matter provides an impressively good fit, with a p-value of 0.78 in the best fit point, to the Galactic Center gamma-ray flux, for DM masses in the range (40-80) GeV and sterile neutrino masses 20 GeV less than or similar to M-N < M-DM. Such values are compatible with the limits from Fermi-LAT observations of the dwarfs spheroidal galaxies in the Milky Way halo, which rule out dark matter masses below similar to 50 GeV ( 90 GeV), for sterile neutrino masses M-N less than or similar to MDM ( M-N << M-DM). We also estimate the impact of AMS-02 anti-proton data on this scenario.  
  Address [Folgado, Miguel G.; Rius, Nuria; Ruiz de Austri, Roberto] Univ Valencia, CSIC, Dept Fis Teor, C-Catedratico Jose Beltran 2, E-46980 Paterna, Spain, Email: migarfol@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000440591500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3681  
Permanent link to this record
 

 
Author (up) Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N. url  doi
openurl 
  Title Cosmological data analysis of f(R) gravity models Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 004 - 18pp  
  Keywords modified gravity; cosmological parameters from LSS  
  Abstract A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the Lambda CDM model.  
  Address [Girones, Z.; Marchetti, A.; Mena, O.; Pena-Garay, C.; Rius, N.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Valencia 46071, Spain, Email: girones@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284825100004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 315  
Permanent link to this record
 

 
Author (up) Hernandez, P.; Kekic, M.; Lopez-Pavon, J.; Racker, J.; Rius, N. url  doi
openurl 
  Title Leptogenesis in GeV-scale seesaw models Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 067 - 34pp  
  Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics; CP violation  
  Abstract We revisit the production of leptonic asymmetries in minimal extensions of the Standard Model that can explain neutrino masses, involving extra singlets with Majorana masses in the GeV scale. We study the quantum kinetic equations both analytically, via a perturbative expansion up to third order in the mixing angles, and numerically. The analytical solution allows us to identify the relevant CP invariants, and simplifies the exploration of the parameter space. We find that sizeable lepton asymmetries are compatible with non-degenerate neutrino masses and measurable active-sterile mixings.  
  Address [Hernandez, P.; Kekic, M.; Racker, J.; Rius, N.] Univ Valencia, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: m.pilar.hernandez@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000363555500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2425  
Permanent link to this record
 

 
Author (up) Hernandez, P.; Lopez-Pavon, J.; Rius, N.; Sandner, S. url  doi
openurl 
  Title Bounds on right-handed neutrino parameters from observable leptogenesis Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 012 - 58pp  
  Keywords Baryo-and Leptogenesis; Early Universe Particle Physics; Sterile or Heavy Neutrinos  
  Abstract We revisit the generation of a matter-antimatter asymmetry in the minimal extension of the Standard Model with two singlet heavy neutral leptons (HNL) that can explain neutrino masses. We derive an accurate analytical approximation to the solution of the complete linearized set of kinetic equations, which exposes the non-trivial parameter dependencies in the form of parameterization-independent CP invariants. The identification of various washout regimes relevant in different regions of parameter space sheds light on the relevance of the mass corrections in the interaction rates and clarifies the correlations of baryogenesis with other observables. In particular, by requiring that the measured baryon asymmetry is reproduced, we derive robust upper or lower bounds on the HNL mixings depending on their masses, and constraints on their flavour structure, as well as on the CP-violating phases of the PMNS mixing matrix, and the amplitude of neutrinoless double-beta decay. We also find certain correlations between low and high scale CP phases. Especially emphasizing the testable part of the parameter space we demonstrate that our findings are in very good agreement with numerical results. The methods developed in this work can help in exploring more complex scenarios.  
  Address [Hernandez, P.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: m.pilar.hernandez@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000914640400003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5467  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva