|   | 
Details
   web
Records
Author (up) Carrio, F.; Castillo Gimenez, V.; Ferrer, A.; Gonzalez, V.; Higon-Rodriguez, E.; Marin, C.; Moreno, P.; Sanchis, E.; Solans, C.; Valero, A.; Valls Ferrer, J.A.
Title Optical Link Card Design for the Phase II Upgrade of TileCal Experiment Type Journal Article
Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 58 Issue 4 Pages 1657-1663
Keywords High energy physics instrumentation computing; optical-fiber communication high-speed electronics; programmable logic devices
Abstract This paper presents the design of an optical link card developed in the frame of the R&D activities for the phase 2 upgrade of the TileCal experiment. This board, that is part of the evaluation of different technologies for the final choice in the next years, is designed as a mezzanine that can work independently or be plugged in the optical multiplexer board of the TileCal backend electronics. It includes two SNAP 12 optical connectors able to transmit and receive up to 75 Gb/s and one SFP optical connector for lower speeds and compatibility with existing hardware as the read out driver. All processing is done in a Stratix II GX field-programmable gate array (FPGA). Details are given on the hardware design, including signal and power integrity analysis, needed when working with these high data rates and on firmware development to obtain the best performance of the FPGA signal transceivers and for the use of the GBT protocol.
Address [Carrio, F; Gonzalez, V; Marin, C; Sanchis, E] Univ Valencia, Dept Elect Engn, E-46100 Valencia, Spain, Email: vicente.gonzalez@uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000293975700037 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 722
Permanent link to this record
 

 
Author (up) DEPFET collaboration (Alonso, O. et al); Boronat, M.; Esperante-Pereira, D.; Fuster, J.; Garcia, I.G.; Lacasta, C.; Oyanguren, A.; Ruiz, P.; Timon, G.; Vos, M.
Title DEPFET Active Pixel Detectors for a Future Linear e(+)e(-) Collider Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 60 Issue 2 Pages 1457-1465
Keywords Active pixel sensor; DEPFET; linear collider; vertex detector
Abstract The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 μm. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling, and services. In this paper, the status of the DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear e(+)e(-) collider.
Address [Alonso, O.; Casanova, R.; Dieguez, A.] Univ Barcelona, E-08028 Barcelona, Spain, Email: marcel.vos@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000320856800029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1489
Permanent link to this record
 

 
Author (up) Dimmock, M.R.; Nikulin, D.A.; Gillam, J.E.; Nguyen, C.V.
Title An OpenCL Implementation of Pinhole Image Reconstruction Type Journal Article
Year 2012 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 59 Issue 4 Pages 1738-1749
Keywords Collimator; GPU; OpenCL; pinhole
Abstract AC++/OpenCL software platform for emission image reconstruction of data from pinhole cameras has been developed. The software incorporates a new, accurate but computationally costly, probability distribution function for operating on list-mode data from detector stacks. The platform architecture is more general than previous works, supporting advanced models such as arbitrary probability distribution, collimation geometry and detector stack geometry. The software was implemented such that all performance-critical operations occur on OpenCL devices, generally GPUs. The performance of the software is tested on several commodity CPU and GPU devices.
Address [Dimmock, Matthew R.; Nikulin, Dmitri A.; Nguyen, Chuong V.] Monash Univ, Sch Phys, Melbourne, Vic 3800, Australia, Email: matthew.dimmock@synchrotron.org.au;
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000307893900034 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1145
Permanent link to this record
 

 
Author (up) Egea Canet, F.J. et al; Gadea, A.; Huyuk, T.
Title A New Front-End High-Resolution Sampling Board for the New-Generation Electronics of EXOGAM2 and NEDA Detectors Type Journal Article
Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 62 Issue 3 Pages 1056-1062
Keywords Acquisition in HP-Ge detectors; high-speed ADCs; low-noise electronics design
Abstract This paper presents the final design and results of the FADC Mezzanine for the EXOGAM (EXOtic GAMma array spectrometer) and NEDA (Neutron Detector Array) detectors. The measurements performed include those of studying the effective number of bits, the energy resolution using HP-Ge detectors, as well as timing histograms and discrimination performance. Finally, the conclusion shows how a common digitizing device has been integrated in the experimental environment of two very different detectors which combine both low-noise acquisition and fast sampling rates. Not only the integration fulfilled the expected specifications on both systems, but it also showed how a study of synergy between detectors could lead to the reduction of resources and time by applying a common strategy.
Address [Egea Canet, F. J.; Gonzalez, V.; Sanchis, E.] Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain, Email: jaegea@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000356458000028 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2278
Permanent link to this record
 

 
Author (up) Egea Canet, F.J. et al; Gadea, A.; Huyuk, T.
Title Digital Front-End Electronics for the Neutron Detector NEDA Type Journal Article
Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 62 Issue 3 Pages 1063-1069
Keywords Digital systems; front-end electronics; neutron detectors; neutron-gamma discrimination
Abstract This paper presents the design of the NEDA (Neutron Detector Array) electronics, a first attempt to involve the use of digital electronics in large neutron detector arrays. Starting from the front-end modules attached to the PMTs (PhotoMultiplier Tubes) and ending up with the data processing workstations, a comprehensive electronic system capable of dealing with the acquisition and pre-processing of the neutron array is detailed. Among the electronic modules required, we emphasize the front-end analog processing, the digitalization, digital pre-processing and communications firmware, as well as the integration of the GTS (Global Trigger and Synchronization) system, already used successfully in AGATA (Advanced Gamma Tracking Array). The NEDA array will be available for measurements in 2016.
Address [Egea Canet, F. J.; Gonzalez, V.; Sanchis, E.] Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain, Email: jaegea@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000356458000029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2279
Permanent link to this record