|   | 
Details
   web
Records
Author (up) Boucenna, M.S.; Morisi, S.; Tortola, M.; Valle, J.W.F.
Title Bilarge neutrino mixing and the Cabibbo angle Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 5 Pages 051301 - 4pp
Keywords
Abstract Recent measurements of the neutrino mixing angles cast doubt on the validity of the so-far popular 2 tribimaximal mixing Ansatz. We propose a parametrization for the neutrino mixing matrix where the reactor angle seeds the large solar and atmospheric mixing angles, equal to each other in first approximation. We suggest such a bilarge mixing pattern as a model-building standard, realized when the leading order value of theta(13) equals the Cabibbo angle lambda(C).
Address [Boucenna, S. M.; Morisi, S.; Tortola, M.; Valle, J. W. F.] Univ Politecn Valencia, Inst Fis Corpuscular, CSIC, AHEP Grp, E-46071 Valencia, Spain, Email: boucenna@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000308690400001 Approved no
Is ISI yes International Collaboration
Call Number IFIC @ pastor @ Serial 1147
Permanent link to this record
 

 
Author (up) Cañas, B.C.; Garces, E.A.; Miranda, O.G.; Tortola, M.; Valle, J.W.F.
Title The weak mixing angle from low energy neutrino measurements: A global update Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 761 Issue Pages 450-455
Keywords
Abstract Taking into account recent theoretical and experimental inputs on reactor fluxes we reconsider the determination of the weak mixing angle from low energy experiments. We perform a global analysis to all available neutrino-electron scattering data from reactor antineutrino experiments, obtaining sin(2) theta(W) = 0.252 +/- 0.030. We discuss the impact of the new theoretical prediction for the neutrino spectrum, the new measurement of the reactor antineutrino spectrum by the Daya Bay collaboration, as well as the effect of radiative corrections. We also reanalyze the measurements of the nu(e) – e cross section at accelerator experiments including radiative corrections. By combining reactor and accelerator data we obtain an improved determination for the weak mixing angle, sin(2) theta(W) = 0.254 +/- 0.024.
Address [Canas, B. C.; Miranda, O. G.] Ctr Invest Estudios Avanzados IPN, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: bcorduz@fis.cinvestav.mx;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000384469900064 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2940
Permanent link to this record
 

 
Author (up) Cañas, B.C.; Miranda, O.G.; Parada, A.; Tortola, M.; Valle, J.W.F.
Title Updating neutrino magnetic moment constraints Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 753 Issue Pages 191-198
Keywords
Abstract In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), discussing both the constraints on the magnitudes of the three transition moments Lambda(i) and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1 x 10(-11) mu(B) at 90% C.L. This corresponds to the individual transition magnetic moment constraints: vertical bar Lambda(1)vertical bar <= 5.6 x10(-11)mu(B), vertical bar Lambda(2)vertical bar <= 4.0 x10(-11)mu(B), and vertical bar Lambda(3)vertical bar <= 3.1 x10(-11)mu B(90% C. L.), irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.
Address [Canas, B. C.; Miranda, O. G.] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: bcorduz@fis.cinvestav.mx;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000368783600029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2551
Permanent link to this record
 

 
Author (up) Chatterjee, S.S.; Miranda, O.G.; Tortola, M.; Valle, J.W.F.
Title Nonunitarity of the lepton mixing matrix at the European Spallation Source Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 7 Pages 075016 - 16pp
Keywords
Abstract If neutrinos get mass through the exchange of lepton mediators, as in seesaw schemes, the neutrino appearance probabilities in oscillation experiments are modified due to effective nonunitarity of the lepton mixing matrix. This also leads to new CP phases and an ambiguity in underpinning the “conventional” phase of the three-neutrino paradigm. We study the CP sensitivities of various setups based at the European Spallation Source neutrino super-beam (ESSnuSB) experiment in the presence of nonunitarity. We also examine its potential in constraining the associated new physics parameters. Moreover, we show how the combination of DUNE and ESSnuSB can help further improve the sensitivities on the nonunitarity parameters.
Address [Chatterjee, Sabya Sachi] Univ Paris Saclay, Inst Phys Theor, CNRS, CEA, F-91191 Gif Sur Yvette, France, Email: sabya-sachi.chatterjee@ipht.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000898616000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5440
Permanent link to this record
 

 
Author (up) De Romeri, V.; Martinez-Mirave, P.; Tortola, M.
Title Signatures of primordial black hole dark matter at DUNE and THEIA Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 051 - 21pp
Keywords dark matter theory; neutrino experiments; primordial black holes
Abstract Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the 10(15)-10(17) g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawking radiation. We explore the possibility of detecting light (non-)rotating PBHs with future neutrino experiments. We focus on two next generation facilities: the Deep Underground Neutrino Experiment (DUNE) and THEIA. We simulate the expected event spectra at both experiments assuming different PBH mass distributions and spins, and we extract the expected 95% C.L. sensitivities to these scenarios. Our analysis shows that future neutrino experiments like DUNE and THEIA will be able to set competitive constraints on PBH dark matter, thus providing complementary probes in a part of the PBH parameter space currently constrained mainly by photon data.
Address [De Romeri, Valentina] Univ Valencia, Dept Fis Teor, Paterna 46980, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000758221400007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5140
Permanent link to this record