|   | 
Details
   web
Records
Author (up) De Romeri, V.; Fernandez-Martinez, E.; Sorel, M.
Title Neutrino oscillations at DUNE with improved energy reconstruction Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 030 - 25pp
Keywords CP violation; Neutrino Physics
Abstract We study the physics reach of the long-baseline oscillation analysis of the DUNE experiment when realistic simulations are used to estimate its neutrino energy reconstruction capabilities. Our studies indicate that significant improvements in energy resolution compared to what is customarily assumed are plausible. This improved energy resolution can increase the sensitivity to leptonic CP violation in two ways. On the one hand, the CP-violating term in the oscillation probability has a characteristic energy dependence that can be better reproduced. On the other hand, the second oscillation maximum, especially sensitive to delta(CP), is better reconstructed. These effects lead to a significant improvement in the fraction of values of delta(CP) for which a 5 sigma discovery of leptonic CP-violation would be possible. The precision of the delta(CP) measurement could also be greatly enhanced, with a reduction of the maximum uncertainties from 26 degrees to 18 degrees for a 300 MW.kt.yr exposure. We therefore believe that this potential gain in physics reach merits further investigations of the detector performance achievable in DUNE.
Address [De Romeri, Valentina; Fernandez-Martinez, Enrique] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain, Email: valentina.deromeri@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000382887300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2807
Permanent link to this record
 

 
Author (up) Fernandez-Martinez, E.; Giordano, G.; Mena, O.; Mocioiu, I.
Title Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue 9 Pages 093011 - 7pp
Keywords
Abstract The main goal of the IceCube Deep Core array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters.
Address [Fernandez-Martinez, Enrique] Werner Heisenberg Inst, Max Planck Inst Phys, D-80805 Munich, Germany
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000284259000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 332
Permanent link to this record
 

 
Author (up) Fernandez-Martinez, E.; Gonzalez-Lopez, M.; Hernandez-Garcia, J.; Hostert, M.; Lopez-Pavon, J.
Title Effective portals to heavy neutral leptons Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 001 - 45pp
Keywords Neutrino Interactions; Non-Standard Neutrino Properties; Sterile or Heavy Neutrinos
Abstract The existence of right-handed neutrinos, or heavy neutral leptons (HNLs), is strongly motivated by the observation of neutrino masses and mixing. The mass of these new particles could lie below the electroweak scale, making them accessible to lowenergy laboratory experiments. Additional new physics at high energies can mediate new interactions between the Standard Model particles and HNLs, and is most conveniently parametrized by the neutrino Standard Model Effective Field Theory, or nu SMEFT for short. In this work, we consider the dimension six nu SMEFT operators involving one HNL field in the mass range of O(1) MeV < MN < O(100) GeV. By recasting existing experimental limits on the production and decay of new light particles, we constrain the Wilson coefficients and new physics scale of each operator as a function of the HNL mass.
Address [Fernandez-Martinez, Enrique; Gonzalez-Lopez, Manuel] Univ Autonoma Madrid, Inst Fis Teor, Campus Cantoblanco, Madrid 28049, Spain, Email: enrique.fernandez-martinez@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001067715500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5697
Permanent link to this record
 

 
Author (up) Fernandez-Martinez, E.; Li, T.; Pascoli, S.; Mena, O.
Title Improvement of the low energy neutrino factory Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue 7 Pages 073010 - 13pp
Keywords
Abstract The low energy neutrino factory has been proposed as a very sensitive setup for future searches for CP violation and matter effects. Here we study how its performance is affected when the experimental specifications of the setup are varied. Most notably, we have considered the addition of the “platinum'' nu(mu) -> nu(e) channel. We find that, while theoretically the extra channel provides very useful complementary information and helps to lift degeneracies, its practical usefulness is lost when considering realistic background levels. Conversely, an increase in statistics in the ”golden'' nu(mu) -> nu(e) channel and, to some extent, an improvement in the energy resolution, lead to an important increase in the performance of the facility, given the rich energy dependence of the "golden'' channel at these energies. We show that a low energy neutrino factory with a baseline of 1300 km, muon energy of 4.5 GeV, and either a 20 kton totally active scintillating detector or 100 kton liquid argon detector, can have outstanding sensitivity to the neutrino oscillation parameters theta(13), delta, and the mass hierarchy. For our estimated exposure of 2: 8 x 10(23) kton x decays per muon polarity, the low energy neutrino factory has sensitivity to theta(13) and delta for sin(2)(2 theta(13)) > 10(-4) and to the mass hierarchy for sin(2)(2 theta(13)) > 10(-3)
Address [Martinez, Enrique Fernandez] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany, Email: enfmarti@mppmu.mpg.de
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000277201900018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 458
Permanent link to this record
 

 
Author (up) Fernandez-Martinez, E.; Lopez-Pavon, J.; No, J.M.; Ota, T.; Rosauro-Alcaraz, S.
Title nu Electroweak baryogenesis: the scalar singlet strikes back Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 8 Pages 715 - 23pp
Keywords
Abstract We perform a comprehensive scan of the parameter space of a general singlet scalar extension of the Standard Model to identify the regions which can lead to a strong first-order phase transition, as required by the electroweak baryogenesis mechanism. We find that taking into account bubble nucleation is a fundamental constraint on the parameter space and present a conservative and fast estimate for it so as to enable efficient parameter space scanning. The allowed regions turn out to be already significantly probed by constraints on the scalar mixing from Higgs signal strength measurements. We also consider the addition of new neutrino singlet fields with Yukawa couplings to both scalars and forming heavy (pseudo)-Dirac pairs, as in the linear or inverse Seesaw mechanisms for neutrino mass generation. We find that their inclusion does not alter the allowed parameter space from early universe phenomenology in a significant way. Conversely, there are allowed regions of the parameter space where the presence of the neutrino singlets would remarkably modify the collider phenomenology, yielding interesting new signatures in Higgs and singlet scalar decays.
Address [Fernandez-Martinez, E.; No, J. M.; Ota, T.] Univ Autonoma Madrid, CSIC, Dept Fis Teor, IFT UAM, Madrid 28049, Spain, Email: rosauro@ijclab.in2p3.fr
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001045200700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5609
Permanent link to this record