Gomez-Cadenas, J. J., Martin-Albo, J., Sorel, M., Ferrario, P., Monrabal, F., Muñoz, J., et al. (2011). Sense and sensitivity of double beta decay experiments. J. Cosmol. Astropart. Phys., 06(6), 007–30pp.
Abstract: The search for neutrinoless double beta decay is a very active field in which the number of proposals for next-generation experiments has proliferated. In this paper we attempt to address both the sense and the sensitivity of such proposals. Sensitivity comes first, by means of proposing a simple and unambiguous statistical recipe to derive the sensitivity to a putative Majorana neutrino mass, m(beta beta). In order to make sense of how the different experimental approaches compare, we apply this recipe to a selection of proposals, comparing the resulting sensitivities. We also propose a “physics-motivated range” (PMR) of the nuclear matrix elements as a unifying criterium between the different nuclear models. The expected performance of the proposals is parametrized in terms of only four numbers: energy resolution, background rate (per unit time, isotope mass and energy), detection efficiency, and beta beta isotope mass. For each proposal, both a reference and an optimistic scenario for the experimental performance are studied. In the reference scenario we find that all the proposals will be able to partially explore the degenerate spectrum, without fully covering it, although four of them (KamLAND-Zen, CUORE, NEXT and EXO) will approach the 50 meV boundary. In the optimistic scenario, we find that CUORE and the xenon-based proposals (KamLAND-Zen, EXO and NEXT) will explore a significant fraction of the inverse hierarchy, with NEXT covering it almost fully. For the long term future, we argue that Xe-136-based experiments may provide the best case for a 1-ton scale experiment, given the potentially very low backgrounds achievable and the expected scalability to large isotope masses.
|
Guadilla, V. et al, Tain, J. L., Algora, A., Agramunt, J., Gelletly, W., Jordan, D., et al. (2018). Characterization and performance of the DTAS detector. Nucl. Instrum. Methods Phys. Res. A, 910, 79–89.
Abstract: DTAS is a segmented total absorption y-ray spectrometer developed for the DESPEC experiment at FAIR. It is composed of up to eighteen NaI(Tl) crystals. In this work we study the performance of this detector with laboratory sources and also under real experimental conditions. We present a procedure to reconstruct offline the sum of the energy deposited in all the crystals of the spectrometer, which is complicated by the effect of NaI(Tl) light-yield non-proportionality. The use of a system to correct for time variations of the gain in individual detector modules, based on a light pulse generator, is demonstrated. We describe also an event-based method to evaluate the summing-pileup electronic distortion in segmented spectrometers. All of this allows a careful characterization of the detector with Monte Carlo simulations that is needed to calculate the response function for the analysis of total absorption gamma-ray spectroscopy data. Special attention was paid to the interaction of neutrons with the spectrometer, since they are a source of contamination in studies of beta-delayed neutron emitting nuclei.
|
Herrero, V., Toledo, J., Catala, J. M., Esteve, R., Gil, A., Lorca, D., et al. (2012). Readout electronics for the SiPM tracking plane in the NEXT-1 prototype. Nucl. Instrum. Methods Phys. Res. A, 695, 229–232.
Abstract: NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC with electroluminescence readout. A large-scale prototype with a SiPM tracking plane has been built. The primary electron paths can be reconstructed from time-resolved measurements of the light that arrives to the SiPM plane. Our approach is to measure how many photons have reached each SiPM sensor each microsecond with a gated integrator. We have designed and tested a 16-channel front-end board that includes the analog paths and a digital section. Each analog path consists of three different stages: a transimpedance amplifier, a gated integrator and an offset and gain control stage. Measurements show good linearity and the ability to detect single photoelectrons.
|
IDS Collaboration(Lica, R. et al), & Morales, A. I. (2017). beta decay studies of n-rich Cs isotopes with the ISOLDE Decay Station. J. Phys. G, 44(5), 054002–14pp.
Abstract: Neutron-rich Ba isotopes are expected to exhibit octupolar correlations, reaching their maximum in isotopes around mass A = 146. The odd-A neutron-rich members of this isotopic chain show typical patterns related to non-axially symmetric shapes, which are however less marked compared to even-A ones, pointing to a major contribution from vibrations. In the present paper we present results from a recent study focused on Cs148-150 beta-decay performed at the ISOLDE Decay Station equipped with fast-timing detectors. A detailed analysis of the measured decay half-lives and decay scheme of Ba-149 is presented, giving a first insight in the structure of this neutron-rich nucleus.
|
IDS Collaboration(Olaizola, B. et al), Algora, A., & Nacher, E. (2025). The 76Cu conundrum remains unsolved. Phys. Lett. B, 866, 139551–8pp.
Abstract: Near the doubly-magic nucleus Ni-78 (Z = 28, N = 50), there has been a decades-long debate on the existence of a long-lived isomer in Cu-76. A recent mass measurement claimed to have settled the debate, by measuring the energy of the isomer and shedding light on the structure of the nucleus. In this work, we present new, more accurate, and precise values of the half-lives of the isomeric and ground states in Cu-76. Our findings suggest that both states have very similar half-lives, in the 600-700 ms range, in disagreement with the literature values, implying that they cannot be differentiated by their decay curves. These results raise more questions than they answer, reopening the debate and showing that the structures in Cu-76 are still not fully understood.
|
Loya Villalpando, A. A., Martin-Albo, J., Chen, W. T., Guenette, R., Lego, C., Park, J. S., et al. (2020). Improving the light collection efficiency of silicon photomultipliers through the use of metalenses. J. Instrum., 15(11), P11021–13pp.
Abstract: Metalenses are optical devices that implement nanostructures as phase shifters to focus incident light. Their compactness and simple fabrication make them a potential cost-effective solution for increasing light collection efficiency in particle detectors with limited photosensitive area coverage. Here we report on the characterization and performance of metalenses in increasing the light collection efficiency of silicon photomultipliers (SiPM) of various sizes using an LED of 630 nm, and find a six to seven-fold increase in signal for a 1.3 x 1 3 mm(2) SiPM when coupled with a 10-mm-diameter metalens manufactured using deep ultraviolet stepper lithography. Such improvements could be valuable for future generations of particle detectors, particularly those employed in rare-event searches such as dark matter and neutrinoless double beta decay.
|
Melcon, A. A., Cuendis, S. A., Cogollos, C., Diaz-Morcillo, A., Dobrich, B., Gallego, J. D., et al. (2020). Scalable haloscopes for axion dark matter detection in the 30 μeV range with RADES. J. High Energy Phys., 07(7), 084–28pp.
Abstract: RADES (Relic Axion Detector Exploratory Setup) is a project with the goal of directly searching for axion dark matter above the 30 μeV scale employing custom-made microwave filters in magnetic dipole fields. Currently RADES is taking data at the LHC dipole of the CAST experiment. In the long term, the RADES cavities are envisioned to take data in the BabyIAXO magnet. In this article we report on the modelling, building and characterisation of an optimised microwave-filter design with alternating irises that exploits maximal coupling to axions while being scalable in length without suffering from mode-mixing. We develop the mathematical formalism and theoretical study which justifies the performance of the chosen design. We also point towards the applicability of this formalism to optimise the MADMAX dielectric haloscopes.
|
Meloni, D., Morisi, S., & Peinado, E. (2011). Neutrino phenomenology and stable dark matter with A(4). Phys. Lett. B, 697(4), 339–342.
Abstract: We present a model based on the A(4) non-Abelian discrete symmetry leading to a predictive five-parameter neutrino mass matrix and providing a stable dark matter candidate. We found an interesting correlation among the atmospheric and the reactor angles which predicts theta(23) similar to pi/4for very small reactor angle and deviation from maximal atmospheric mixing for large theta(13). Only normal neutrino mass spectrum is possible and the effective mass entering the neutrinoless double beta decay rate is constrained to be vertical bar m(ee)vertical bar > 4 x 10(-4) eV.
|
Morisi, S., & Peinado, E. (2011). Admixture of quasi-Dirac and Majorana neutrinos with tri-bimaximal mixing. Phys. Lett. B, 701(4), 451–457.
Abstract: We propose a realization of the so-called bimodal/schizophrenic model proposed recently. We assume 54, the permutation group of four objects as flavor symmetry giving tri-bimaximal lepton mixing at leading order. In these models the second massive neutrino state is assumed quasi-Dirac and the remaining neutrinos are Majorana states. In the case of inverse mass hierarchy, the lower bound on the neutrinoless double beta decay parameter m(ee) is about two times that of the usual lower bound, within the range of sensitivity of the next generation of experiments.
|
NEMO-3 Collaboration(Argyriades, J. et al), Diaz, J., Martin-Albo, J., Monrabal, F., Novella, P., Serra, L., et al. (2011). Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors. Nucl. Instrum. Methods Phys. Res. A, 625(1), 20–28.
Abstract: We have constructed a GEANT4-based detailed software model of photon transport in plastic sontillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutnnoless double beta decay We compare our simulations to measurements using conversion electrons from a calibration source of (BI)-B-207 and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account In this article we briefly describe our modeling approach and results of our studies.
|