Tolosa-Delgado, A. et al, Tain, J. L., Agramunt, J., Algora, A., Domingo-Pardo, C., Morales, A. I., et al. (2025). Impact of Newly Measured β-Delayed Neutron Emitters around 78Ni on Light Element Nucleosynthesis in the Neutrino Wind Following a Neutron Star Merger. Phys. Rev. Lett., 134(17), 172701–11pp.
Abstract: Neutron emission probabilities and half-lives of 37 /3-delayed neutron emitters from 75Ni to 92Br were measured at the RIKEN Nishina Center in Japan, including 11 one-neutron and 13 two-neutron emission probabilities and six half-lives for the first time that supersede theoretical estimates. These nuclei lie in the path of the weak r process occurring in neutrino-driven winds from the accretion disk formed after the merger of two neutron stars synthesizing elements in the A 80 abundance peak. The presence of such elements dominates the accompanying kilonova emission over the first few days and have been identified in the AT2017gfo event, associated to the gravitational wave detection GW170817. Abundance calculations based on over 17 000 simulated trajectories describing the evolution of matter properties in the merger outflows show that the new data lead to an increase of 50%-70% in the abundance of Y, Zr, Nb, and Mo. This enhancement is large compared to the scatter of relative abundances observed in old very metal poor stars and thus is significant in the comparison with other possible astrophysical processes contributing to the light-element production. These results underline the importance of including experimental decay data for very neutron-rich /3-delayed neutron emitters into r-process models.
|
Wu, J. et al, Algora, A., Agramunt, J., Morales, A. I., Orrigo, S. E. A., Tain, J. L., et al. (2022). First observation of isomeric states in 111Zr, 113Nb, and 115Mo. Phys. Rev. C, 106(6), 064328–5pp.
Abstract: Isomeric states in the neutron-rich nuclei 111Zr [T1/2 = 0.10(7) μs], 113Nb [T1/2 = 0.7(4) μs], 115Mo [T1/2 = 46(3) μs] were first identified at the Radioactive Ion Beam Factory (RIBF) of RIKEN by using in-flight fission and fragmentation of a 238U beam at an energy of 345 MeV/u. This is a brief report of the gamma transitions de -exciting from isomeric states and half-lives measurements, which provides the first spectroscopy in the nuclear region of prolate-to-oblate shape-phase transition around mass A approximate to 110.
|
Yokoyama, R. et al, Tain, J. L., Algora, A., Agramunt, J., Domingo-Pardo, C., Morales, A. I., et al. (2023). β-delayed neutron emissions from N > 50 gallium isotopes. Phys. Rev. C, 108(6), 064307–15pp.
Abstract: beta-delayed gamma-neutron spectroscopy has been performed on the decay of A=84 to 87 gallium isotopes at the RI-beam Factory at the RIKEN Nishina Center using a high-efficiency array of 3He neutron counters (BRIKEN). beta-2n-gamma events were measured in the decays of all of the four isotopes for the first time, which is direct evidence for populating the excited states of two-neutron daughter nuclei. Detailed decay schemes with the gamma branching ratios were obtained for these isotopes, and the neutron emission probabilities (P-xn) were updated from the previous study. Hauser-Feshbach statistical model calculations were performed to understand the experimental branching ratios. We found that the P-1n and P-2n values are sensitive to the nuclear level densities of 1n daughter nuclei and showed that the statistical model reproduced the P-2n/P-1n ratio better when experimental levels plus shell-model level densities fit by the Gilbert-Cameron formula were used as the level-density input. We also showed the neutron and gamma branching ratios are sensitive to the ground-state spin of the parent nucleus. Our statistical model analysis suggested J <= 3 for the unknown ground-state spin of the odd-odd nucleus Ga-86, from the I gamma(4(+)-> 2(+))/I-gamma(2(+)-> 0(+)) ratio of Ga-84 and the P-2n/P-1n ratio. These results show the necessity of detailed understanding of the decay scheme, including data from neutron spectroscopy, in addition to gamma measurements of the multineutron emitters.
|
Yokoyama, R. et al, Tain, J. L., Algora, A., Agramunt, J., Domingo-Pardo, C., Morales, A. I., et al. (2019). Strong one-neutron emission from two-neutron unbound states in beta decays of the r-process nuclei Ga-86,Ga-87. Phys. Rev. C, 100(3), 031302–6pp.
Abstract: beta-delayed one-neutron and two-neutron branching ratios (P-1n and P-2n) have been measured in the decay of A = 84 to 87 Ga isotopes at the Radioactive-Isotope Beam Factory (RIBF) at the RIKEN Nishina Center using a high-efficiency array of He-3 neutron counters (BRIKEN). Two-neutron emission was observed in the decay of Ga-84,Ga-85,Ga-87 for the first time and the branching ratios were measured to be P-2n = 1.6(2)%, 1.3(2)%, and 10.2(28)(stat)(5)(sys)%, respectively. One-neutron branching ratio of Ga-87 (P-1n = 81(9)(stat)(8)(sys)%) and half-life of 29(4) ms were measured for the first time. The branching ratios of Ga-86 were also measured to be P-1n = 74(2)(stat)(8)(sys)% and 16.2(9)(stat)(6)(sys)% with better precision than a previous study. The observation that P-1n > P-2n for both Ga-86,Ga-87 was unexpected and is interpreted as a signature of dominating one-neutron emission from the two-neutron unbound excited states in Ge-86,Ge-87. In order to interpret the experimental results, shell-model and Hauser-Feshbach statistical model calculations of delayed particle and gamma-ray emission probabilities were performed. This model framework reproduces the experimental results. The shell model alone predicts P-2n significantly larger than P-1n for the Ga-87 decay, and it is necessary to invoke a statistical description to successfully explain the observation that P-1n > P-2n. Our new results demonstrate the relevance and importance of a statistical description of neutron emission for the prediction of the decay properties of multineutron emitters and that it must be included in the r-process modeling.
|
Yokoyama, R., Singh, M., Grzywacz, R., Keeler, A., King, T. T., Agramunt, J., et al. (2019). Segmented YSO scintillation detectors as a new beta-implant detection tool for decay spectroscopy in fragmentation facilities. Nucl. Instrum. Methods Phys. Res. A, 937, 93–97.
Abstract: A newly developed segmented YSO scintillator detector was implemented for the first time at the RI-beam Factory at RIKEN Nishina Center as an implantation-decay counter. The results from the experiment demonstrate that the detector is a viable alternative to conventional silicon-strip detectors with its good timing resolution and high detection efficiency for beta particles. A Position-Sensitive Photo-Multiplier Tube (PSPMT) is coupled with a 48 x 48 segmented YSO crystal. To demonstrate its capabilities, a known short-lived isomer in Ni-76 and the beta decay of Co-74 were measured by implanting those ions into the YSO detector. The half-lives and gamma-rays observed in this work are consistent with the known values. The beta-ray detection efficiency is more than 80 % for the decay of Co-74.
|