|   | 
Details
   web
Records
Author (up) n_TOF Collaboration (Zugec, P. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.
Title GEANT4 simulation of the neutron background of the C6D6 set-up for capture studies at n_TOF Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 760 Issue Pages 57-67
Keywords GEANT4 simulations; Neutron time of flight; Neutron background; N_TOF; Neutron capture
Abstract The neutron sensitivity of the Cr6D6 detector setup used at nTOF facility for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire nTOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a(nat)-C sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured C-nat yield has been discovered, which prevents the use of C-nat data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron background for two different samples are demonstrating the important role of accurate simulations of the neutron background in capture cross-section measurements.
Address [Zugec, P.; Bosnar, D.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia, Email: pzugec@phy.hr
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000338350500008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1828
Permanent link to this record
 

 
Author (up) Oberhauser, B.B.; Bisio, P.; Celentano, A.; Depero, E.; Dusaev, R.R.; Kirpichnikov, D.V.; Kirsanov, M.M.; Krasnikove, N.V.; Marini, A.; Marsicano, L.; Molina-Bueno, L.; Mongillo, M.; Shchukin, D.; Sieber, H.; Voronchikhin, I.V.
Title Development of the fully Geant4 compatible package for the simulation of Dark Matter in fixed target experiments Type Journal Article
Year 2024 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 300 Issue Pages 109199 - 11pp
Keywords Simulation; DarkMatter; Geant4
Abstract The search for new comparably light (well below the electroweak scale) feebly interacting particles is an exciting possibility to explain some mysterious phenomena in physics, among them the origin of Dark Matter. The sensitivity study through detailed simulation of projected experiments is a key point in estimating their potential for discovery. Several years ago we created the DMG4 package for the simulation of DM (Dark Matter) particles in fixed target experiments. The natural approach is to integrate this simulation into the same program that performs the full simulation of particles in the experiment setup. The Geant4 toolkit framework was chosen as the most popular and versatile solution nowadays. The simulation of DM particles production by this package accommodates several possible scenarios, employing electron, muon or photon beams and involving various mediators, such as vector, axial vector, scalar, pseudoscalar, or spin 2 particles. The bremsstrahlung, annihilation or Primakoff processes can be simulated. The package DMG4 contains a subpackage DarkMatter with cross section methods weakly connected to Geant4. It can be used in different frameworks. In this paper, we present the latest developments of the package, such as extending the list of possible mediator particle types, refining formulas for the simulation and extending the mediator mass range. The user interface is also made more flexible and convenient. In this work, we also demonstrate the usage of the package, the improvements in the simulation accuracy and some cross check validations. Program summary Program title: DMG4 CPC Library link to program files: https://doi .org /10 .17632 /cmr4bcrj6j .1 Licensing provisions: GNU General Public License 3 Programming language: c++ Journal reference of previous version: Comput. Phys. Commun. 269 (2021) 108129 Does the new version supersede the previous version?: Yes Reasons for the new version: Numerous developments, addition of new features Summary of revisions: WW approximation cross sections for the muon beam are implemented and cross-checked, models with semivisible A ' (inelastic Dark Matter) and spin 2 mediators are added. The range of possible mediator masses is extended. Several important improvements for the annihilation processes are made, the number of possible annihilation processes is extended. User interface is improved. Several bugs are fixed. Nature of problem: For the simulation of Dark Matter production processes in fixed target experiments a code that can be easily integrated in programs for the full simulation of experimental setup is needed. Solution method: A fully Geant4 compatible DM simulation package DMG4 was presented in 2020. We present numerous further developments of this package.
Address [Oberhauser, B. Banto; Depero, E.; Mongillo, M.; Sieber, H.] Swiss Fed Inst Technol, Inst Particle Phys & Astrophys, CH-8093 Zurich, Switzerland, Email: mikhail.kirsanov@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:001292485100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6232
Permanent link to this record
 

 
Author (up) Tain, J.L.; Agramunt, J.; Algora, A.; Aprahamian, A.; Cano-Ott, D.; Fraile, L.M.; Guerrero, C.; Jordan, M.D.; Mach, H.; Martinez, T.; Mendoza, E.; Mosconi, M.; Nolte, R.
Title The sensitivity of LaBr3:Ce scintillation detectors to low energy neutrons: Measurement and Monte Carlo simulation Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 774 Issue Pages 17-24
Keywords Neutron sensitivity; Scintillation detectors; Lanthanum bromide; Geant4 simulations; Nuclear data libraries
Abstract The neutron sensitivity of a cylindrical circle minus 1.5 in x 1.5 in LaBr3:Ce scintillation detector was measured using quasi-monoenergetic neutron beams in the energy range from 40 keV to 2.5 MeV. In this energy range the detector is sensitive to gamma-rays generated in neutron inelastic and capture processes. The experimental energy response was compared with Monte Carlo simulations performed with the Geant4 simulation toolkit using the so-called High Precision Neutron Models. These models rely on relevant information stored in evaluated nuclear data libraries. The performance of the Geant4 Neutron Data Library as well as several standard nuclear data libraries was investigated. In the latter case this was made possible by the use of a conversion tool that allowed the direct use of the data from other libraries in Geant4. Overall it was found that there was good agreement with experiment for some of the neutron data bases like ENDF/B-VII.0 or JENDL-3.3 but not with the others such as ENDF/B-VI.8 or JEFF-3.1.
Address [Tain, J. L.; Agramunt, J.; Algora, A.; Jordan, M. D.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-28040 Valencia, Spain, Email: tain@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000347407800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2076
Permanent link to this record