toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Barrio, J.; Etxebeste, A.; Lacasta, C.; Muñoz, E.; Oliver, J.F.; Solaz, C.; Llosa, G. doi  openurl
  Title Performance of VATA64HDR16 ASIC for medical physics applications based on continuous crystals and SiPMs Type Journal Article
  Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 10 Issue Pages P12001 - 12pp  
  Keywords Solid state detectors; Photon detectors for UV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs etc); Front-end electronics for detector readout; Gamma detectors (scintillators, CZT, HPG, HgI etc)  
  Abstract Detectors based on Silicon Photomultipliers (SiPMs) coupled to continuous crystals are being tested in medical physics applications due to their potential high resolution and sensitivity. To cope with the high granularity required for a very good spatial resolution, SiPM matrices with a large amount of elements are needed. To be able to read the information coming from each individual channel, dedicated ASICs are employed. The VATA64HDR16 ASIC is a 64-channel, charge-sensitive amplifier that converts the collected charge into a proportional current or voltage signal. A complete assessment of the suitability of that ASIC for medical physics applications based on continuous crystals and SiPMs has been carried out. The input charge range is linear from 20 pC up to 55 pC. The energy resolution obtained at 511 keV is 10% FWHM with a LaBr3 crystal and 16% FWHM with a LYSO crystal. A coincidence timing resolution of 24 ns FWHM is obtained with two LYSO crystals.  
  Address [Barrio, J.; Etxebeste, A.; Lacasta, C.; Munoz, E.; Oliver, J. F.; Solaz, C.; Llosa, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parque Cient,C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: John.Barrio@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000369998500034 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2548  
Permanent link to this record
 

 
Author (up) Gomez-Cadenas, J.J.; Benlloch-Rodriguez, J.M.; Ferrario, P. url  doi
openurl 
  Title Monte Carlo study of the coincidence resolving time of a liquid xenon PET scanner, using Cherenkov radiation Type Journal Article
  Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 12 Issue Pages P08023 - 13pp  
  Keywords Cherenkov and transition radiation; Gamma camera; SPECT; PET PET/CT; coronary CT angiography (CTA); Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs etc)  
  Abstract In this paper we use detailed Monte Carlo simulations to demonstrate that liquid xenon (LXe) can be used to build a Cherenkov-based TOF-PET, with an intrinsic coincidence resolving time (CRT) in the vicinity of 10 ps. This extraordinary performance is due to three facts: a) the abundant emission of Cherenkov photons by liquid xenon; b) the fact that LXe is transparent to Cherenkov light; and c) the fact that the fastest photons in LXe have wavelengths higher than 300 nm, therefore making it possible to separate the detection of scintillation and Cherenkov light. The CRT in a Cherenkov LXe TOF-PET detector is, therefore, dominated by the resolution (time jitter) introduced by the photosensors and the electronics. However, we show that for sufficiently fast photosensors (e.g, an overall 40 ps jitter, which can be achieved by current micro-channel plate photomultipliers) the overall CRT varies between 30 and 55 ps, depending on the detection efficiency. This is still one order of magnitude better than commercial CRT devices and improves by a factor 3 the best CRT obtained with small laboratory prototypes.  
  Address [Ferrario, P.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: paola.ferrario@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000414160300006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3347  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva