toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Batra, A.; Bharadwaj, P.; Mandal, S.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Phenomenology of the simplest linear seesaw mechanism Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 221 - 48pp  
  Keywords Specific BSM Phenomenology; Sterile or Heavy Neutrinos; Baryon; Lepton Number Violation; Other Weak Scale BSM Models  
  Abstract The linear seesaw mechanism provides a simple way to generate neutrino masses. In addition to Standard Model particles, it includes quasi-Dirac leptons as neutrino mass mediators, and a leptophilic scalar doublet seeding small neutrino masses. Here we review its associated physics, including restrictions from theory and phenomenology. The model yields potentially detectable μ-> e gamma rates as well as distinctive signatures in the production and decay of heavy neutrinos ( N-i) and the charged Higgs boson (H-+/-) arising from the second scalar doublet. We have found that production processes such as e(+) e(-) -> NN, e- gamma -> NH- and e(+) e(-) -> H (+) H- followed by the decay chain H-+/--> l(+/-) (i) N, N -> l`(+/-) (j) W (-/+) leads to striking lepton number violation signatures at high energies which may probe the Majorana nature of neutrinos.  
  Address [Batra, Aditya; Bharadwaj, Praveen; Srivastava, Rahul] Indian Inst Sci Educ & Res Bhopal, Dept Phys, Bhopal Bypass Rd, Bhopal 462066, India, Email: aditya.batra@tecnico.ulisboa.pt;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001039968700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5605  
Permanent link to this record
 

 
Author (up) Beltran, R.; Cepedello, R.; Hirsch, M. url  doi
openurl 
  Title Tree-level UV completions for NRSMEFT d=6 and d=7 operators Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 31pp  
  Keywords Baryon/Lepton Number Violation; SMEFT; Sterile or Heavy Neutrinos  
  Abstract We study ultra-violet completions for operators in standard model effective field theory extended with right-handed neutrinos (NRSMEFT). Using a diagrammatic method, we generate systematically lists of possible tree-level completions involving scalars, fermions or vectors for all operators at d = 6 and d = 7, which contain at least one right-handed neutrino. We compare our lists of possible UV models to the ones found for pure SMEFT. We also discuss how the observation of LNV processes via NRSMEFT operators at the LHC can be related to Majorana neutrino masses of the standard model neutrinos.  
  Address [Beltran, Rebeca; Hirsch, Martin] Univ Valencia, Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: rebeca.beltran@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001054461600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5625  
Permanent link to this record
 

 
Author (up) Cai, Y.; Herrero-Garcia, J.; Schmidt, M.A.; Vicente, A.; Volkas, R.R. url  doi
openurl 
  Title From the Trees to the Forest: A Review of Radiative Neutrino Mass Models Type Journal Article
  Year 2017 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 5 Issue Pages 63 - 56pp  
  Keywords neutrino masses; lepton flavor violation; lepton number violation; beyond the standard model; effective field theory; model building; LHC; dark matter  
  Abstract A plausible explanation for the lightness of neutrino masses is that neutrinos are massless at tree level, with their mass (typically Majorana) being generated radiatively at one or more loops. The new couplings, together with the suppression coming from the loop factors, imply that the new degrees of freedom cannot be too heavy (they are typically at the TeV scale). Therefore, in these models there are no large mass hierarchies and they can be tested using different searches, making their detailed phenomenological study very appealing. In particular, the new particles can be searched for at colliders and generically induce signals in lepton-flavor and lepton-number violating processes (in the case of Majorana neutrinos), which are not independent from reproducing correctly the neutrino masses and mixings. The main focus of the review is on Majorana neutrinos. We order the allowed theory space from three different perspectives: (i) using an effective operator approach to lepton number violation, (ii) by the number of loops at which the Weinberg operator is generated, (iii) within a given loop order, by the possible irreducible topologies. We also discuss in more detail some popular radiative models which involve qualitatively different features, revisiting their most important phenomenological implications. Finally, we list some promising avenues to pursue.  
  Address [Cai, Yi] Sun Yat Sen Univ, Sch Phys, Guangzhou, Guangdong, Peoples R China, Email: juan.herrero-garcia@coepp.org.au;  
  Corporate Author Thesis  
  Publisher Frontiers Research Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000416908800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3393  
Permanent link to this record
 

 
Author (up) Coito, L.; Faubel, C.; Herrero-Garcia, J.; Santamaria, A.; Titov, A. url  doi
openurl 
  Title Sterile neutrino portals to Majorana dark matter: effective operators and UV completions Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 085 - 36pp  
  Keywords Models for Dark Matter; Particle Nature of Dark Matter; Sterile or Heavy Neutrinos; Baryon/Lepton Number Violation  
  Abstract Stringent constraints on the interactions of dark matter with the Standard Model suggest that dark matter does not take part in gauge interactions. In this regard, the possibility of communicating between the visible and dark sectors via gauge singlets seems rather natural. We consider a framework where the dark matter talks to the Standard Model through its coupling to sterile neutrinos, which generate active neutrino masses. We focus on the case of Majorana dark matter, with its relic abundance set by thermal freeze-out through annihilations into sterile neutrinos. We use an effective field theory approach to study the possible sterile neutrino portals to dark matter. We find that both lepton-number-conserving and lepton-number-violating operators are possible, yielding an interesting connection with the Dirac/Majorana character of active neutrinos. In a second step, we open the different operators and outline the possible renormalisable models. We analyse the phenomenology of the most promising ones, including a particular case in which the Majorana mass of the sterile neutrinos is generated radiatively.  
  Address [Coito, Leonardo] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: leonardo.coito@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000836782300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5340  
Permanent link to this record
 

 
Author (up) Herrero-Brocal, A.; Vicente, A. url  doi
openurl 
  Title The majoron coupling to charged leptons Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 078 - 33pp  
  Keywords Axions and ALPs; Baryon/Lepton Number Violation; Lepton Flavour Violation (charged)  
  Abstract The particle spectrum of all Majorana neutrino mass models with spontaneous violation of global lepton number include a Goldstone boson, the so-called majoron. The presence of this massless pseudoscalar changes the phenomenology dramatically. In this work we derive general analytical expressions for the 1-loop coupling of the majoron to charged leptons. These can be applied to any model featuring a majoron that have a clear hierarchy of energy scales, required for an expansion in powers of the low-energy scale to be valid. We show how to use our general results by applying them to some example models, finding full agreement with previous results in several popular scenarios and deriving novel ones in other setups.  
  Address [Herrero-Brocal, Antonio; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif Paterna,C-Catedrat Jose Beltran,2, E-46980 Valencia, Spain, Email: antonio.herrero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001143228100004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5909  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva