toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bernabeu, J.; Martinez-Vidal, F. doi  openurl
  Title Time-Reversal Violation Type
  Year 2015 Publication Annual Review of Nuclear and Particle Science Abbreviated Journal Annu. Rev. Nucl. Part. Sci.  
  Volume 65 Issue Pages 403-427  
  Keywords time reversal; CP violation; T-odd products; electric dipole moments; B mesons; K mesons; EPR entanglement  
  Abstract The violation of CP symmetry between matter and antimatter in the neutral K and B meson systems is well established, with a high degree of consistency between all available experimental measurements and with the Standard Model of particle physics. On the basis of the up-to-now-unbroken CPT symmetry, the violation of CP symmetry strongly suggests that the behavior of these particles under weak interactions must also be asymmetric under time reversal T. Many searches for T violation have been performed and proposed using different observables and experimental approaches. These include T-odd observables, such as triple products in weak decays, and genuine observables, such as permanent electric dipole moments of nondegenerate stationary states and the breaking of the reciprocity relation. We discuss the conceptual basis of the required exchange of initial and final states with unstable particles, using quantum entanglement and the decay as a filtering measurement, for the case of neutral B and K mesons. Using this method, the BaBar experiment at SLAC has clearly observed T violation in B mesons.  
  Address [Bernabeu, Jose; Martinez-Vidal, Fernando] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Annual Reviews Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-8998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000363473100017 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2430  
Permanent link to this record
 

 
Author (up) Fadel, M.; Yadin, B.; Mao, Y.P.; Byrnes, T.; Gessner, M. url  doi
openurl 
  Title Multiparameter quantum metrology and mode entanglement with spatially split nonclassical spin ensembles Type Journal Article
  Year 2023 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 25 Issue 7 Pages 073006 - 25pp  
  Keywords quantum metrology; Bose-Einstein condensates; spin-squeezing; Fisher information matrix; mode and particle entanglement  
  Abstract We identify the multiparameter sensitivity of entangled spin states, such as spin-squeezed and Dicke states that are spatially distributed into several addressable spatial modes. Analytical expressions for the spin-squeezing matrix of families of states that are accessible by current atomic experiments reveal the quantum gain in multiparameter metrology, as well as the optimal strategies to maximize the sensitivity gain for the estimation of any linear combination of parameters. We further study the mode entanglement of these states by deriving a witness for genuine k-partite mode entanglement from the spin-squeezing matrix. Our results highlight the advantage of mode entanglement for distributed sensing, and outline optimal protocols for multiparameter estimation with nonclassical spatially-distributed spin ensembles. We illustrate our findings with the design of a protocol for gradient sensing with a Bose-Einstein condensate in an entangled spin state in two modes.  
  Address [Fadel, Matteo] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland, Email: fadelm@phys.ethz.ch;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001026518600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5582  
Permanent link to this record
 

 
Author (up) Faleiro, R.; Pavao, R.; Costa, H.A.S.; Hiller, B.; Blin, A.H.; Sampaio, M. url  doi
openurl 
  Title Perturbative approach to entanglement generation in QFT using the S matrix Type Journal Article
  Year 2020 Publication Journal of Physics A Abbreviated Journal J. Phys. A  
  Volume 53 Issue 36 Pages 365301 - 19pp  
  Keywords S-matrix; entanglement; QFT; cross-section  
  Abstract We compute the variation of the von Neumann (VN) entropy Delta Sbetween the asymptoticinandoutmomenta modes of a real scalar field A, when elastically scattered against the modes of another scalar field B. This is done to see how the entanglement between the two fields' momenta changes under the scattering procedure. The calculation is separated into two case studies, one where the fields' asymptoticinstates are separable, and another where they are arbitrarily entangled. We perform a perturbative calculation to one loop order in the separable case, and verify that Delta Schanges in a non-trivial way when we vary the momentum of the incoming field modes and/or the coupling of the theory. Finally, also in the separable case, we show an explicit dependence between Delta Sand the cross-section of the collision, consistent with perturbation theory.  
  Address [Faleiro, Ricardo; Hiller, Brigitte] Univ Lisbon, Dept Math, Ave Rovisco Pais, P-1049001 Lisbon, Portugal, Email: ricardofaleiro@tecnico.ulisboa.pt  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-8113 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000563486000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4511  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva