toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Cabello, J.; Etxebeste, A.; Llosa, G.; Ziegler, S.I. doi  openurl
  Title Simulation study of PET detector limitations using continuous crystals Type Journal Article
  Year 2015 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 60 Issue 9 Pages 3673-3694  
  Keywords continuous crystals; parallax effects; depth of interaction; high resolution; small animal PET  
  Abstract Continuous crystals can potentially obtain better intrinsic detector spatial resolution compared to pixelated crystals, additionally providing depth of interaction (DoI) information from the light distribution. To achieve high performance sophisticated interaction position estimation algorithms are required. There are a number of algorithms in the literature applied to different crystal dimensions and different photodetectors. However, the different crystal properties and photodetector array geometries have an impact on the algorithm performance. In this work we analysed, through Monte Carlo simulations, different combinations of realistic crystals and photodetector parameters to better understand their influence on the interaction position estimation accuracy, with special emphasis on the DoI. We used an interaction position estimation based on an analytical model for the present work. Different photodetector granulation schemes were investigated. The impact of the number of crystal faces readout by photodetectors was studied by simulating scenarios with one and two photodetectors. In addition, crystals with different levels of reflection and aspect ratios (AR) were analysed. Results showed that the impact of photodetector granularity is mainly shown near the edges and specially in the corners of the crystal. The resulting intrinsic spatial resolution near the centre with a 12 x 12 x 10 mm(3) LYSO crystal was 0.7-0.9 mm, while the average spatial resolution calculated on the entire crystal was 0.77 +/- 0.18 mm for all the simulated geometries with one and two photodetectors. Having front and back photodetectors reduced the DoI bias (Euclidean distance between estimated DoI and real DoI) and improved the transversal resolution near the corners. In scenarios with one photodetector, small AR resulted in DoI inaccuracies for absorbed events at the entrance of the crystal. These inaccuracies were slightly reduced either by increasing the AR or reducing the amount of reflected light, and highly mitigated using two photodetectors. Using one photodetector, we obtained a piecewise DoI error model with a DoI resolution of 0.4-0.9 mm for a 1.2 AR crystal, and we observed that including a second photodetector or reducing the amount of reflections reduced the DoI bias but did not significantly improve the DoI resolution. Translating the piecewise DoI error model obtained in this study to image reconstruction we obtained a spatial resolution variability of 0.39 mm using 85% of the FoV, compared to 2.59 mm and 1.87 mm without DoI correction or with a dual layer system, respectively.  
  Address [Cabello, Jorge; Ziegler, Sibylle I.] Tech Univ Munich, Klinikum Rechts Isar, Nukl Med Klin & Poliklin, D-80290 Munich, Germany, Email: jorge.cabello@tum.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000354104700019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2226  
Permanent link to this record
 

 
Author (up) Pino, F.; Roe, N.; Orero, A.; Falcon, C.; Rojas, S.; Benlloch, J.M.; Ros, D.; Pavia, J. doi  openurl
  Title Development of a variable-radius pinhole SPECT system with a portable gamma camera Type Journal Article
  Year 2011 Publication Revista Española de Medicina Nuclear Abbreviated Journal Rev. Esp. Med. Nucl.  
  Volume 30 Issue 5 Pages 286-291  
  Keywords SPECT; Small animal; Pinhole; Portable gamma camera; Continuous scintillator  
  Abstract Objective: To develop a small-animal SPECT system using a low cost commercial portable gamma camera equipped with a pinhole collimator, a continuous scintillation crystal and a position-sensitive photomultiplier tube. Material and methods: The gamma camera was attached to a variable radius system, which enabled us to optimize sensitivity and resolution by adjusting the radius of rotation to the size of the object. To investigate the capability of the SPECT system for small animal imaging, the dependence of resolution and calibration parameters on radius was assessed and acquisitions of small phantoms and mice were carried out. Results: Resolution values, ranging from 1.0 mm for a radius of 21.4 mm and 1.4 mm for a radius of 37.2 mm were obtained, thereby justifying the interest of a variable radius SPECT system. Conclusions: The image quality of phantoms and animals were satisfactory, thus confirming the usefulness of the system for small animal SPECT imaging.  
  Address [Pino, F; Roe, N; Ros, D] Univ Barcelona, Fac Med, Unitat Biofis, Barcelona 7, Spain, Email: fpino@iconcologia.net  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0212-6982 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294659400004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 753  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva