toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fernandez-Tejero, J. et al; Soldevila, U. doi  openurl
  Title Humidity sensitivity of large area silicon sensors: Study and implications Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 978 Issue Pages 164406 - 6pp  
  Keywords Humidity sensitivity; Large area silicon sensors; Slim-edge; HL-LHC  
  Abstract The production of large area sensors is one of the main challenges that the ATLAS collaboration faces for the new Inner-Tracker full-silicon detector. During the prototype fabrication phase for the High Luminosity Large Hadron Collider upgrade, several ATLAS institutes observed indications of humidity sensitivity of large area sensors, even at relative humidities well below the dew point. Specifically, prototype Barrel and End-Cap silicon strip sensors fabricated in 6-inch wafers manifest a prompt decrease of the breakdown voltage when operating under high relative humidity, adversely affecting the performance of the sensors. In addition to the investigation of these prototype sensors, a specific fabrication batch with special passivation is also studied, allowing for a deeper understanding of the responsible mechanisms. This work presents an extensive study of this behaviour on large area sensors. The locations of the hotspots at the breakdown voltage at high humidity are revealed using different infrared thermography techniques. Several palliative treatments are attempted, proving the influence of sensor cleaning methods, as well as baking, on the device performance, but no improvement on the humidity sensitivity was achieved. Furthermore, a study of the incidence of the sensitivity in different batches is also presented, introducing a hypothesis of the origins of the humidity sensitivity associated to the sensor edge design, together with passivation thickness and conformity. Several actions to be taken during sensor production and assembly are extracted from this study, in order to minimize the impact of humidity sensitivity on the performance of large area silicon sensors for High Energy Physics experiments.  
  Address [Fernandez-Tejero, J.; Avino, O.; Fleta, C.; Ullan, M.; Vellvehi, M.] CSIC, Ctr Nacl Microelect IMB CNM, Campus UAB Bellaterra, Barcelona 08193, Spain, Email: Xavi.Fdez@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000560076700009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4504  
Permanent link to this record
 

 
Author Gillam, J.E.; Solevi, P.; Oliver, J.F.; Casella, C.; Heller, M.; Joram, C.; Rafecas, M. doi  openurl
  Title Sensitivity recovery for the AX-PET prototype using inter-crystal scattering events Type Journal Article
  Year 2014 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 59 Issue 15 Pages 4065-4083  
  Keywords positron emission tomography (PET); inter-crystal scattering; sensitivity  
  Abstract The development of novel detection devices and systems such as the AX-positron emission tomography (PET) demonstrator often introduce or increase the measurement of atypical coincidence events such as inter-crystal scattering (ICS). In more standard systems, ICS events often go undetected and the small measured fraction may be ignored. As the measured quantity of such events in the data increases, so too does the importance of considering them during image reconstruction. Generally, treatment of ICS events will attempt to determine which of the possible candidate lines of response (LoRs) correctly determine the annihilation photon trajectory. However, methods of assessment often have low success rates or are computationally demanding. In this investigation alternative approaches are considered. Experimental data was taken using the AX-PET prototype and a NEMA phantom. Three methods of ICS treatment were assessed-each of which considered all possible candidate LoRs during image reconstruction. Maximum likelihood expectation maximization was used in conjunction with both standard (line-like) and novel (V-like in this investigation) detection responses modeled within the system matrix. The investigation assumed that no information other than interaction locations was available to distinguish between candidates, yet the methods assessed all provided means by which such information could be included. In all cases it was shown that the signal to noise ratio is increased using ICS events. However, only one method, which used full modeling of the ICS response in the system matrix-the V-like model-provided enhancement in all figures of merit assessed in this investigation. Finally, the optimal method of ICS incorporation was demonstrated using data from two small animals measured using the AX-PET demonstrator.  
  Address [Gillam, John E.; Solevi, Paola; Oliver, Josep F.; Rafecas, Magdalena] Univ Valencia, CSIC, IFIC, Valencia, Spain, Email: john.gillam@sydney.edu.au  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000340056800006 Approved no  
  Is ISI yes International Collaboration  
  Call Number IFIC @ pastor @ Serial 1879  
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Benlloch-Rodriguez, J.M.; Ferrario, P. doi  openurl
  Title Application of scintillating properties of liquid xenon and silicon photomultiplier technology to medical imaging Type Journal Article
  Year 2016 Publication Spectrochimica Acta Part B Abbreviated Journal Spectroc. Acta Pt. B  
  Volume 118 Issue Pages 6-13  
  Keywords PET; TOF; Liquid xenon; Energy resolution; High sensitivity; Coincidence resolution time (CRT); SiPMs  
  Abstract We describe a new positron emission time-of-flight apparatus using liquid xenon. The detector is based in a liquid xenon scintillating cell. The cell shape and dimensions can be optimized depending on the intended application. In its simplest form, the liquid xenon scintillating cell is a box in which two faces are covered by silicon photomultipliers and the others by a reflecting material such as Teflon. It is a compact, homogenous and highly efficient detector which shares many of the desirable properties of monolithic crystals, with the added advantage of high yield and fast scintillation offered by liquid xenon. Our initial studies suggest that good energy and spatial resolution comparable with that achieved by lutetium oxyorthosilicate crystals can be obtained with a detector based in liquid xenon scintillating cells. In addition, the system can potentially achieve an excellent coincidence resolving time of better than 100 ps.  
  Address [Gomez-Cadenas, J. J.; Benlloch-Rodriguez, J. M.; Ferrario, Paola] Univ Valencia, CSIC, IFIC, E-46003 Valencia, Spain, Email: gomez@mail.cern.ch  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000374073300002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2631  
Permanent link to this record
 

 
Author Monerris-Belda, O.; Cervera Marin, R.; Rodriguez Jodar, M.; Diaz-Caballero, E.; Alcaide Guillen, C.; Petit, J.; Boria, V.E.; Gimeno, B.; Raboso, D. doi  openurl
  Title High Power RF Discharge Detection Technique Based on the In-Phase and Quadrature Signals Type Journal Article
  Year 2021 Publication IEEE Transactions on Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microw. Theory Tech.  
  Volume 69 Issue 12 Pages 5429-5438  
  Keywords Radio frequency; Microwave theory and techniques; Electric breakdown; Discharges (electric); Noise measurement; Sensitivity; RF signals; Corona; microwave devices; multipactor; radio frequency (RF) breakdown; RF high power  
  Abstract High power radio frequency (RF) breakdown testing is a subject of great relevance in the space industry, due to the increasing need of higher transmission power and smaller devices. This work presents a novel RF breakdown detection system, which monitors the same parameters as the microwave nulling system but with several advantages. Where microwave nulling-a de facto standard in RF breakdown testing-is narrowband and requires continuous tuning to keep its sensitivity, the proposed technique is broadband and maintains its performance for any RF signal. On top of that, defining the detection threshold is cumbersome due to the lack of an international standardized criterion. Small responses may appear in the detection system during the test and, sometimes, it is not possible to determine if these are an actual RF breakdown or random noise. This new detection system uses a larger analysis bandwidth, thus reducing the cases in which a small response is difficult to be classified. The proposed detection method represents a major step forward in high power testing as it runs without human intervention, warning the operator or decreasing the RF power automatically much faster than any human operator.  
  Address [Monerris-Belda, Oscar; Cervera Marin, Raul; Rodriguez Jodar, Miguel; Petit, John] Val Space Consortium, Valencia 46022, Spain, Email: oscar.monerris@val-space.com  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000725804500027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5042  
Permanent link to this record
 

 
Author Tain, J.L.; Agramunt, J.; Algora, A.; Aprahamian, A.; Cano-Ott, D.; Fraile, L.M.; Guerrero, C.; Jordan, M.D.; Mach, H.; Martinez, T.; Mendoza, E.; Mosconi, M.; Nolte, R. doi  openurl
  Title The sensitivity of LaBr3:Ce scintillation detectors to low energy neutrons: Measurement and Monte Carlo simulation Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 774 Issue Pages 17-24  
  Keywords Neutron sensitivity; Scintillation detectors; Lanthanum bromide; Geant4 simulations; Nuclear data libraries  
  Abstract The neutron sensitivity of a cylindrical circle minus 1.5 in x 1.5 in LaBr3:Ce scintillation detector was measured using quasi-monoenergetic neutron beams in the energy range from 40 keV to 2.5 MeV. In this energy range the detector is sensitive to gamma-rays generated in neutron inelastic and capture processes. The experimental energy response was compared with Monte Carlo simulations performed with the Geant4 simulation toolkit using the so-called High Precision Neutron Models. These models rely on relevant information stored in evaluated nuclear data libraries. The performance of the Geant4 Neutron Data Library as well as several standard nuclear data libraries was investigated. In the latter case this was made possible by the use of a conversion tool that allowed the direct use of the data from other libraries in Geant4. Overall it was found that there was good agreement with experiment for some of the neutron data bases like ENDF/B-VII.0 or JENDL-3.3 but not with the others such as ENDF/B-VI.8 or JEFF-3.1.  
  Address [Tain, J. L.; Agramunt, J.; Algora, A.; Jordan, M. D.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-28040 Valencia, Spain, Email: tain@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347407800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2076  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva