toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Serenelli, A.; Scott, P.; Villante, F.L.; Vincent, A.C.; Asplund, M.; Basu, S.; Grevesse, N.; Pena-Garay, C. url  doi
openurl 
  Title Implications of solar wind measurements for solar models and composition Type Journal Article
  Year 2016 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 463 Issue 1 Pages 2-9  
  Keywords neutrinos; Sun: abundances; Sun: helioseismology; Sun: interior  
  Abstract We critically examine recent claims of a high solar metallicity by von Steiger & Zurbuchen (2016, vSZ16) based onin situ measurements of the solar wind, rather than the standard spectroscopically inferred abundances (Asplund et al. 2009, hereafter AGSS09). We test the claim by Vagnozzi et al. (2016) that a composition based on the solar wind enables one to construct a standard solar model in agreement with helioseismological observations and thus solve the decades-old solar modelling problem. We show that, although some helioseismological observables are improved compared to models computed with spectroscopic abundances, most are in fact worse. The high abundance of refractory elements leads to an overproduction of neutrinos, with a predicted B-8 flux that is nearly twice its observed value, and Be-7 and CNO fluxes that are experimentally ruled out at high confidence. A combined likelihood analysis shows that models using the vSZ16 abundances are worse than AGSS09 despite a higher metallicity. We also present astrophysical and spectroscopic arguments showing the vSZ16 composition to be an implausible representation of the solar interior, identifying the first ionization potential effect in the outer solar atmosphere and wind as the likely culprit.  
  Address [Serenelli, Aldo] Inst Space Sci IEEC CSIC, E-08193 Barcelona, Spain, Email: aldos@ice.csic.es  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386464900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2842  
Permanent link to this record
 

 
Author (up) Vincent, A.C.; Scott, P. url  doi
openurl 
  Title Thermal conduction by dark matter with velocity and momentum-dependent cross-sections Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 019 - 31pp  
  Keywords dark matter theory; stars  
  Abstract We use the formalism of Gould and Raffelt [1] to compute the dimensionless thermal conduction coefficients for scattering of dark matter particles with standard model nucleons via cross-sections that depend on the relative velocity or momentum exchanged between particles. Motivated by models invoked to reconcile various recent results in direct detection, we explicitly compute the conduction coefficients alpha and kappa for cross-sections that go as v(rel)(2), v(rel)(4), v(rel)(-2), q(2), q(4) and q(-2), where v(rel) is the relative DM-nucleus velocity and q is the momentum transferred in the collision. We find that a v(rel)(-2) depend ence can significantly enhance energy transport from the inner solar core to the outer core. The same can true for any q-dependent coupling, if the dark matter mass lies within some specific range for each coupling. This effect can complement direct searches for dark matter; combining these results with state-of-the-art solar simulations should greatly increase sensitivity to certain DM models. It also seems possible that the so-called Solar Abundance Problem could be resolved by enhanced energy transport in the solar core due to such velocity-or momentum-dependent scatterings.  
  Address [Vincent, Aaron C.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: vincent@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000343042800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1962  
Permanent link to this record
 

 
Author (up) Vincent, A.C.; Scott, P.; Trampedach, R. url  doi
openurl 
  Title Light bosons in the photosphere and the solar abundance problem Type Journal Article
  Year 2013 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 432 Issue 4 Pages 3332-3339  
  Keywords elementary particles; line: formation; Sun: abundances; Sun: atmosphere; cosmology: theory  
  Abstract Spectroscopy is used to measure the elemental abundances in the outer layers of the Sun, whereas helioseismology probes the interior. It is well known that current spectroscopic determinations of the chemical composition are starkly at odds with the metallicity implied by helioseismology. We investigate whether the discrepancy may be due to conversion of photons to a new light boson in the solar photosphere. We examine the impact of particles with axion-like interactions with the photon on the inferred photospheric abundances, showing that resonant axion-photon conversion is not possible in the region of the solar atmosphere in which line formation occurs. Although non-resonant conversion in the line-forming regions can in principle impact derived abundances, constraints from axion-photon conversion experiments rule out the couplings necessary for these effects to be detectable. We show that this extends to hidden photons and chameleons (which would exhibit similar phenomenological behaviour), ruling out known theories of new light bosons as photospheric solutions to the solar abundance problem.  
  Address [Vincent, A. C.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain, Email: vincent@ific.uv.es  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321053500058 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1481  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva