toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Olmo, G.J.; Rubiera-Garcia, D.; Sanchis-Alepuz, H. url  doi
openurl 
  Title Geonic black holes and remnants in Eddington-inspired Born-Infeld gravity Type Journal Article
  Year 2014 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 74 Issue 3 Pages 2804 - 6pp  
  Keywords  
  Abstract We show that electrically charged solutions within the Eddington-inspired Born-Infeld theory of gravity replace the central singularity by a wormhole supported by the electric field. As a result, the total energy associated with the electric field is finite and similar to that found in the Born-Infeld electromagnetic theory. When a certain charge-to-mass ratio is satisfied, in the lowest part of the mass and charge spectrum the event horizon disappears, yielding stable remnants. We argue that quantum effects in the matter sector can lower the mass of these remnants from the Planck scale down to the TeV scale.  
  Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000333033300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1730  
Permanent link to this record
 

 
Author (up) Olmo, G.J.; Sanchis-Alepuz, H. url  doi
openurl 
  Title Hamiltonian formulation of Palatini f(R) theories a la Brans-Dicke theory Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 10 Pages 104036 - 11pp  
  Keywords  
  Abstract We study the Hamiltonian formulation of f(R) theories of gravity both in metric and in Palatini formalism using their classical equivalence with Brans-Dicke theories with a nontrivial potential. The Palatini case, which corresponds to the omega = -3/2 Brans-Dicke theory, requires special attention because of new constraints associated with the scalar field, which is nondynamical. We derive, compare, and discuss the constraints and evolution equations for the omega = -3/2 and omega not equal -3/2 cases. Based on the properties of the constraint and evolution equations, we find that, contrary to certain claims in the literature, the Cauchy problem for the omega = -3/2 case is well formulated and there is no reason to believe that it is not well posed in general.  
  Address [Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290761400007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 631  
Permanent link to this record
 

 
Author (up) Olmo, G.J.; Sanchis-Alepuz, H.; Tripathi, S. url  doi
openurl 
  Title Stellar structure equations in extended Palatini gravity Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 10 Pages 104039 - 8pp  
  Keywords  
  Abstract We consider static spherically symmetric stellar configurations in Palatini theories of gravity in which the Lagrangian is an unspecified function of the form f(R, R μnu R μnu). We obtain the Tolman-Oppenheimer-Volkov equations corresponding to this class of theories and show that they recover those of f(R) theories and general relativity in the appropriate limits. We show that the exterior vacuum solutions are of Schwarzschild-de Sitter type and comment on the possible expected modifications, as compared to general relativity, of the interior solutions.  
  Address [Olmo, Gonzalo J.; Sanchis-Alepuz, Helios] Univ Valencia, CSIC, Fac Fis, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311143500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1222  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva