toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) ANTARES and IceCube Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes Type Journal Article
  Year 2018 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume 868 Issue 2 Pages L20 - 7pp  
  Keywords cosmic rays; diffusion; Galaxy: disk; gamma rays: diffuse background; neutrinos  
  Abstract The existence of diffuse Galactic neutrino production is expected from cosmic-ray interactions with Galactic gas and radiation fields. Thus, neutrinos are a unique messenger offering the opportunity to test the products of Galactic cosmic-ray interactions up to energies of hundreds of TeV. Here we present a search for this production using ten years of Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) track and shower data, as well as seven years of IceCube track data. The data are combined into a joint likelihood test for neutrino emission according to the KRA(gamma) model assuming a 5 PeV per nucleon Galactic cosmic-ray cutoff. No significant excess is found. As a consequence, the limits presented in this Letter start constraining the model parameter space for Galactic cosmic-ray production and transport.  
  Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: antares.spokeperson@in2p3.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000450844500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3807  
Permanent link to this record
 

 
Author (up) Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Muñoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G. doi  openurl
  Title Influence of the background in Compton camera images for proton therapy treatment monitoring Type Journal Article
  Year 2023 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 68 Issue 14 Pages 144001 - 16pp  
  Keywords Compton imaging; Compton camera; proton therapy; treatment monitoring; Monte Carlo simulation; image reconstruction; background  
  Abstract Objective. Background events are one of the most relevant contributions to image degradation in Compton camera imaging for hadron therapy treatment monitoring. A study of the background and its contribution to image degradation is important to define future strategies to reduce the background in the system. Approach. In this simulation study, the percentage of different kinds of events and their contribution to the reconstructed image in a two-layer Compton camera have been evaluated. To this end, GATE v8.2 simulations of a proton beam impinging on a PMMA phantom have been carried out, for different proton beam energies and at different beam intensities. Main results. For a simulated Compton camera made of Lanthanum (III) Bromide monolithic crystals, coincidences caused by neutrons arriving from the phantom are the most common type of background produced by secondary radiations in the Compton camera, causing between 13% and 33% of the detected coincidences, depending on the beam energy. Results also show that random coincidences are a significant cause of image degradation at high beam intensities, and their influence in the reconstructed images is studied for values of the time coincidence windows from 500 ps to 100 ns. Significance. Results indicate the timing capabilities required to retrieve the fall-off position with good precision. Still, the noise observed in the image when no randoms are considered make us consider further background rejection methods.  
  Address [Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Munoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G.] Inst Fis Corpuscular IFIC, CSIC UV, Valencia, Spain, Email: Marina.Borja@csic.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001022671300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5571  
Permanent link to this record
 

 
Author (up) BRIKEN Collaboration (Tolosa-Delgado, A. et al); Agramunt, J.; Tain, J.L.; Algora, A.; Domingo-Pardo, C.; Morales, A.I.; Rubio, B. url  doi
openurl 
  Title Commissioning of the BRIKEN detector for the measurement of very exotic beta-delayed neutron emitters Type Journal Article
  Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 925 Issue Pages 133-147  
  Keywords Beta-delayed neutrons; Neutron and beta counters; Analysis methodology; Background correction  
  Abstract A new detection system has been installed at the RIKEN Nishina Center (Japan) to investigate decay properties of very neutron-rich nuclei. The setup consists of three main parts: a moderated neutron counter, a detection system sensitive to the implantation and decay of radioactive ions, and gamma-ray detectors. We describe here the setup, the commissioning experiment and some selected results demonstrating its performance for the measurement of half-lives and beta-delayed neutron emission probabilities. The methodology followed in the analysis of the data is described in detail. Particular emphasis is placed on the correction of the accidental neutron background.  
  Address [Tolosa-Delgado, A.; Agramunt, J.; Tain, J. L.; Algora, A.; Domingo-Pardo, C.; Morales, A., I; Rubio, B.] CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain, Email: tain@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000460539400018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3939  
Permanent link to this record
 

 
Author (up) De La Torre Luque, P.; Gaggero, D.; Grasso, D.; Fornieri, O.; Egberts, K.; Steppa, C.; Evoli, C. url  doi
openurl 
  Title Galactic diffuse gamma rays meet the PeV frontier Type Journal Article
  Year 2023 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume 672 Issue Pages A58 - 11pp  
  Keywords diffusion; cosmic rays; Galaxy; general; gamma rays; diffuse background  
  Abstract The Tibet AS gamma and LHAASO collaborations recently reported the observation of a gamma-ray diffuse emission with energy up to the PeV level from the Galactic plane.Aims. We discuss the relevance of non-uniform cosmic-ray transport scenarios and the implications of these results for cosmic-ray physics.Methods. We used the DRAGON and HERMES codes to build high-resolution maps and spectral distributions of that emission for several representative models under the condition that they reproduce a wide set of local cosmic-ray data up to 100 PeV.Results. We show that the energy spectra measured by Tibet AS gamma, LHAASO, ARGO-YBJ, and Fermi-LAT in several regions of interest in the sky can all be reasonably described in terms of the emission arising by the Galactic cosmic-ray “sea”. We also show that all our models are compatible with IceTop gamma-ray upper limits.Conclusions. We compare the predictions of conventional and space-dependent transport models with those data sets. Although the Fermi-LAT, ARGO-YBJ, and LHAASO preliminary data slightly favor this scenario, due to the still large experimental errors, the poorly known source spectral shape at the highest energies, the potential role of spatial fluctuations in the leptonic component, and a possible larger-than-expected contamination due to unresolved sources, a solid confirmation requires further investigations. We discuss which measurements will be most relevant in order to resolve the remaining degeneracy.  
  Address [Luque, P. De La Torre] Stockholm Univ, Alba Nova, S-10691 Stockholm, Sweden, Email: pedro.delatorreluque@fysik.su.se  
  Corporate Author Thesis  
  Publisher Edp Sciences S A Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000960963900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5508  
Permanent link to this record
 

 
Author (up) de Salas, P.F.; Gariazzo, S.; Mena, O.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Neutrino Mass Ordering From Oscillations and Beyond: 2018 Status and Future Prospects Type Journal Article
  Year 2018 Publication Frontiers in Astronomy and Space Sciences Abbreviated Journal Front. Astron. Space Sci.  
  Volume 5 Issue Pages 36 - 50pp  
  Keywords neutrino mass ordering; neutrino oscillations; neutrinoless double beta (0v beta beta) decay; large scale structure formation; cosmic microwave Background (CMB); neutrino masses and flavor mixing  
  Abstract The ordering of the neutrino masses is a crucial input for a deep understanding of flavor physics, and its determination may provide the key to establish the relationship among the lepton masses and mixings and their analogous properties in the quark sector. The extraction of the neutrino mass ordering is a data-driven field expected to evolve very rapidly in the next decade. In this review, we both analyse the present status and describe the physics of subsequent prospects. Firstly, the different current available tools to measure the neutrino mass ordering are described. Namely, reactor, long-baseline (accelerator and atmospheric) neutrino beams, laboratory searches for beta and neutrinoless double beta decays and observations of the cosmic background radiation and the large scale structure of the universe are carefully reviewed. Secondly, the results from an up-to-date comprehensive global fit are reported: the Bayesian analysis to the 2018 publicly available oscillation and cosmological data sets provides strong evidence for the normal neutrino mass ordering vs. the inverted scenario, with a significance of 3.5 standard deviations. This preference for the normal neutrino mass ordering is mostly due to neutrino oscillation measurements. Finally, we shall also emphasize the future perspectives for unveiling the neutrinomass ordering. In this regard, apart from describing the expectations from the aforementioned probes, we also focus on those arising from alternative and novel methods, as 21 cm cosmology, core-collapse supernova neutrinos and the direct detection of relic neutrinos.  
  Address [de Salas, Pablo F.; Gariazzo, Stefano; Mena, Olga; Ternes, Christoph A.; Tortola, Mariam] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: omena@ific.uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-987x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446788500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3755  
Permanent link to this record
 

 
Author (up) Di Valentino, E.; Mena, O. url  doi
openurl 
  Title A fake interacting dark energy detection? Type Journal Article
  Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 500 Issue 1 Pages L22-L26  
  Keywords cosmic background radiation; cosmological parameters; dark energy  
  Abstract Models involving an interaction between the dark matter and the dark energy sectors have been proposed to alleviate the long-standing Hubble constant tension. In this paper, we analyse whether the constraints and potential hints obtained for these interacting models remain unchanged when using simulated Planck data. Interestingly, our simulations indicate that a dangerous fake detection for a non-zero interaction among the dark matter and the dark energy fluids could arise when dealing with current cosmic microwave background (CMB) Planck measurements alone. The very same hypothesis is tested against future CMB observations, finding that only cosmic variance limited polarization experiments, such as PICO or PRISM, could be able to break the existing parameter degeneracies and provide reliable cosmological constraints. This paper underlines the extreme importance of confronting the results arising from data analyses with those obtained with simulations when extracting cosmological limits within exotic cosmological scenarios.  
  Address [Di Valentino, Eleonora] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000599143200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4665  
Permanent link to this record
 

 
Author (up) Gariazzo, S.; Di Valentino, E.; Mena, O.; Nunes, R.C. url  doi
openurl 
  Title Late-time interacting cosmologies and the Hubble constant tension Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 2 Pages 023530 - 12pp  
  Keywords ?CDM scenario; cosmic microwave background (CMB)  
  Abstract In this manuscript we reassess the potential of interacting dark matter-dark energy models in solving the Hubble constant tension. These models have been proposed but also questioned as possible solutions to the H0 problem. Here we examine several interacting scenarios against cosmological observations, focusing on the important role played by the calibration of supernovae data. In order to reassess the ability of interacting dark matter-dark energy scenarios in easing the Hubble constant tension, we systematically confront their theoretical predictions using a prior on the supernovae Ia absolute magnitude MB, which has been argued to be more robust and certainly less controversial than using a prior on the Hubble constant H0. While some data combinations do not show any preference for interacting dark sectors and in some of these scenarios the clustering sigma 8 tension worsens, interacting cosmologies with a dark energy equation of state w < -1 are preferred over the canonical lambda CDM picture even with cosmic microwave background data alone and also provide values of sigma 8 in perfect agreement with those from weak lensing surveys. Future cosmological surveys will test these exotic dark energy cosmologies by accurately measuring the dark energy equation of state and its putative redshift evolution.  
  Address [Gariazzo, Stefano] Ist Nazl Fis Nucleare INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000843205100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5346  
Permanent link to this record
 

 
Author (up) Giare, W.; Di Valentino, E.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title New cosmological bounds on hot relics: axions and neutrinos Type Journal Article
  Year 2021 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 505 Issue 2 Pages 2703-2711  
  Keywords cosmic background radiation; cosmological parameters; dark matter; early Universe; cosmology: observations  
  Abstract Axions, if realized in nature, can be copiously produced in the early universe via thermal processes, contributing to the mass-energy density of thermal hot relics. In light of the most recent cosmological observations, we analyse two different thermal processes within a realistic mixed hot dark matter scenario which includes also massive neutrinos. Considering the axion-gluon thermalization channel, we derive our most constraining bounds on the hot relic masses m(a) < 7.46 eV and Sigma m(nu) < 0.114 eV both at 95 percent CL; while studying the axion-pion scattering, without assuming any specific model for the axion-pion interactions, and remaining in the range of validity of the chiral perturbation theory, our most constraining bounds are improved to m(a) < 0.91 eV and Sigma m(nu) < 0.105 eV, both at 95 percent CL. Interestingly, in both cases, the total neutrino mass lies very close to the inverted neutrino mass ordering prediction. If future terrestrial double beta decay and/or long-baseline neutrino experiments find that the nature mass ordering is the inverted one, this could rule out a wide region in the currently allowed thermal axion window. Our results therefore, strongly support multi messenger searches of axions and neutrino properties, together with joint analyses of their expected sensitivities.  
  Address [Giare, William; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: william.giare@gmail.com  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000672803400085 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4912  
Permanent link to this record
 

 
Author (up) Giare, W.; Renzi, F.; Melchiorri, A.; Mena, O.; Di Valentino, E. url  doi
openurl 
  Title Cosmological forecasts on thermal axions, relic neutrinos, and light elements Type Journal Article
  Year 2022 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 511 Issue 1 Pages 1373-1382  
  Keywords cosmic background radiation; cosmological parameters; dark matter; early Universe; cosmology: observations  
  Abstract One of the targets of future cosmic microwave background (CMB) and baryon acoustic oscillation measurements is to improve the current accuracy in the neutrino sector and reach a much better sensitivity on extra dark radiation in the early Universe. In this paper, we study how these improvements can be translated into constraining power for well-motivated extensions of the standard model of elementary particles that involve axions thermalized before the quantum chromodynamics (QCD) phase transition by scatterings with gluons. Assuming a fiducial Lambda cold dark matter cosmological model, we simulate future data for Stage-IV CMB-like and Dark Energy Spectroscopic Instrument (DESI)-like surveys and analyse a mixed scenario of axion and neutrino hot dark matter. We further account also for the effects of these QCD axions on the light element abundances predicted by big bang nucleosynthesis. The most constraining forecasted limits on the hot relic masses are m(a) less than or similar to 0.92 eV and n-ary sumation m(nu) less than or similar to 0.12 eV at 95 per cent Confidence Level, showing that future cosmic observations can substantially improve the current bounds, supporting multimessenger analyses of axion, neutrino, and primordial light element properties.  
  Address [Giare, William; Melchiorri, Alessandro] Univ Roma La Sapienza, Phys Dept, Ple Aldo Moro 2, I-00185 Rome, Italy, Email: william.giare@gmail.com  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000770034000012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5192  
Permanent link to this record
 

 
Author (up) Jordan, D.; Tain, J.L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Gomez-Hornillos, M.B.; Caballero-Folch, R.; Cortes, G.; Cano-Ott, D.; Mendoza, E.; Bandac, I.; Bettini, A.; Fraile, L.M.; Domingo, C. doi  openurl
  Title Measurement of the neutron background at the Canfranc Underground Laboratory LSC Type Journal Article
  Year 2013 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 42 Issue Pages 1-6  
  Keywords Neutron background; Underground physics; He-3 proportional counters  
  Abstract The energy distribution of the neutron background was measured for the first time at Hall A of the Canfranc Underground Laboratory. For this purpose we used a novel approach based on the combination of the information obtained with six large high-pressure He-3 proportional counters embedded in individual polyethylene blocks of different size. In this way not only the integral value but also the flux distribution as a function of neutron energy was determined in the range from 1 eV to 10 MeV. This information is of importance because different underground experiments show different neutron background energy dependence. The high sensitivity of the setup allowed to measure a neutron flux level which is about four orders of magnitude smaller that the neutron background at sea level. The integral value obtained is Phi(Hall A) = (3.44 +/- 0.35) x 10(-6) cm(-2) s(-1).  
  Address [Jordan, D.; Tain, J. L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: jordan@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315371900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1351  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva