toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Babak, S.; Caprini, C.; Figueroa, D.G.; Karnesis, N.; Marcoccia, P.; Nardini, G.; Pieroni, M.; Ricciardone, A.; Sesana, A.; Torrado, J. url  doi
openurl 
  Title Stochastic gravitational wave background from stellar origin binary black holes in LISA Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages 034 - 37pp  
  Keywords  
  Abstract We use the latest constraints on the population of stellar origin binary black holes (SOBBH) from LIGO/Virgo/KAGRA (LVK) observations, to estimate the stochastic gravitational wave background (SGWB) they generate in the frequency band of LISA. In order to account for the faint and distant binaries, which contribute the most to the SGWB, we extend the merger rate at high redshift assuming that it tracks the star formation rate. We adopt different methods to compute the SGWB signal: we perform an analytical evaluation, we use Monte Carlo sums over the SOBBH population realisations, and we account for the role of the detector by simulating LISA data and iteratively removing the resolvable signals until only the confusion noise is left. The last method allows the extraction of both the expected SGWB and the number of resolvable SOBBHs. Since the latter are few for signal-to-noise ratio thresholds larger than five, we confirm that the spectral shape of the SGWB in the LISA band agrees with the analytical prediction of a single power law. We infer the probability distribution of the SGWB amplitude from the LVK GWTC-3 posterior of the binary population model: at the reference frequency of 0.003 Hz it has an interquartile range of h2ΩGW(f = 3 × 10-3 Hz) ∈ [5.65, 11.5] × 10-13, in agreement with most previous estimates. We then perform a MC analysis to assess LISA's capability to detect and characterise this signal. Accounting for both the instrumental noise and the galactic binaries foreground, with four years of data, LISA will be able to detect the SOBBH SGWB with percent accuracy, narrowing down the uncertainty on the amplitude by one order of magnitude with respect to the range of possible amplitudes inferred from the population model. A measurement of this signal by LISA will help to break the degeneracy among some of the population parameters, and provide interesting constraints, in particular on the redshift evolution of the SOBBH merger rate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6081  
Permanent link to this record
 

 
Author (up) Figueroa, D.G.; Florio, A.; Loayza, N.; Pieroni, M. url  doi
openurl 
  Title Spectroscopy of particle couplings with gravitational waves Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 6 Pages 063522 - 8pp  
  Keywords  
  Abstract We discuss the possibility to measure particle couplings with stochastic gravitational wave backgrounds (SGWBs). Under certain circumstances a sequence of peaks of different amplitude and frequency-a stairway-emerges in a SGWB spectrum, with each peak probing a different coupling. The detection of such signature opens the possibility to reconstruct couplings (spectroscopy) of particle species involved in high energy phenomena generating SGWBs. Stairwaylike signatures may arise in causally produced backgrounds in the early Universe, e.g., from preheating or first order phase transitions. As a proof of principle we study a preheating scenario with an inflaton 0 coupled to multiple daughter fields f chi jg with different coupling strengths. As a clear stairway signature is imprinted in the SGWB spectrum, we reconstruct the relevant couplings with various detectors.  
  Address [Figueroa, Daniel G.; Loayza, Nicolas] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, E-46980 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000861731100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5367  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva