|   | 
Details
   web
Records
Author (up) Ancilotto, F.; Barranco, M.; Navarro, J.; Pi, M.
Title A Density Functional Approach to Para-hydrogen at Zero Temperature Type Journal Article
Year 2016 Publication Journal of Low Temperature Physics Abbreviated Journal J. Low Temp. Phys.
Volume 185 Issue 1-2 Pages 26-38
Keywords Solid and liquid bulk para-hydrogen; Small para-hydrogen clusters; Density functional theory
Abstract We have developed a density functional (DF) built so as to reproduce either the metastable liquid or the solid equation of state of bulk para-hydrogen, as derived from quantum Monte Carlo zero temperature calculations. As an application, we have used it to study the structure and energetics of small para-hydrogen clusters made of up to molecules. We compare our results for liquid clusters with diffusion Monte Carlo (DMC) calculations and find a fair agreement between them. In particular, the transition found within DMC between hollow-core structures for small N values and center-filled structures at higher N values is reproduced. The present DF approach yields results for (pH) clusters indicating that for small N values a liquid-like character of the clusters prevails, while solid-like clusters are instead energetically favored for .
Address [Ancilotto, Francesco] Dipartimento Fis & Astron Galileo Galilei, Padua, Italy, Email: manuel@ecm.ub.edu
Corporate Author Thesis
Publisher Springer/Plenum Publishers Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2291 ISBN Medium
Area Expedition Conference
Notes WOS:000382142000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2814
Permanent link to this record
 

 
Author (up) Ancilotto, F.; Barranco, M.; Navarro, J.; Pi, M.
Title Cavitation of electron bubbles in liquid parahydrogen Type Journal Article
Year 2011 Publication Molecular Physics Abbreviated Journal Mol. Phys.
Volume 109 Issue 23-24 Pages 2757-2762
Keywords liquid parahydrogen; electron bubbles; density functional theory; capillary approximation
Abstract Within a finite-temperature density functional approach, we have investigated the structure of electron bubbles in liquid parahydrogen below the saturated vapour pressure, determining the critical pressure at which electron bubbles explode as a function of temperature. The electron-parahydrogen interaction has been modelled by a Hartree-type local potential fitted to the experimental value of the conduction band-edge for a delocalized electron in pH(2). We have found that the pressure for bubble explosion is, in absolute value, about a factor of two smaller than that of the homogeneous cavitation pressure in the liquid. Comparison with the results obtained within the capillary model shows the limitations of this approximation, especially as temperature increases.
Address [Barranco, Manuel; Pi, Marti] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain, Email: manuel@ecm.ub.es
Corporate Author Thesis
Publisher Taylor & Francis Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-8976 ISBN Medium
Area Expedition Conference
Notes WOS:000299109300007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 930
Permanent link to this record
 

 
Author (up) Davesne, D.; Pastore, A.; Navarro, J.
Title Hartree-Fock Calculations in Semi-Infinite Matter with Gogny Interactions Type Journal Article
Year 2023 Publication Universe Abbreviated Journal Universe
Volume 9 Issue 9 Pages 398 - 11pp
Keywords Nuclear Density Functional Theory; semi-infinite nuclear matter; Hartree-Fock equations; 21.60.Jz; 21.65.-f; 21.65.Mn
Abstract Hartree-Fock equations in semi-infinite nuclear matter for finite range Gogny interactions are presented together with a detailed numerical scheme to solve them. The value of the surface energy is then extracted and given for standard Gogny interactions.
Address [Davesne, Dany] Univ Lyon 1, Inst Phys Infinis Lyon 2, CNRS, IN2P3, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France, Email: davesne@ipnl.in2p3.fr;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001074530100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5693
Permanent link to this record