|   | 
Details
   web
Records
Author (up) Pierre Auger Collaboration (Abraham, J. et al); Pastor, S.
Title A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory Type Journal Article
Year 2010 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 33 Issue 2 Pages 108-129
Keywords Cosmic rays; Extensive air showers; Air fluorescence method; Atmosphere; Aerosols; Lidar; Bi-static lidar
Abstract The air fluorescence detector of the Pierre Auger Observatory is designed to perforin calorimetric measurements of extensive air showers created by Cosmic rays of above 10(18) eV. To correct these measurements for the effects introduced by atmospheric fluctuations, the Observatory contains a group Of monitoring instruments to record atmospheric conditions across the detector site, ail area exceeding 3000 km(2). The atmospheric data are used extensively in the reconstruction of air showers, and are particularly important for the correct determination of shower energies and the depths of shower maxima. This paper contains a summary of the molecular and aerosol conditions measured at the Pierre Auger Observatory since the start of regular operations in 2004, and includes a discussion of the impact of these measurements oil air shower reconstructions. Between 10(18) and 10(20) eV, the systematic Uncertainties due to all atmospheric effects increase from 4% to 8% in measurements of shower energy, and 4 g cm(-2) to 8 g cm(-2) in measurements of the shower maximum.
Address [BenZvi, S.; Pfendner, C.; Westerhoff, S.] Univ Wisconsin, Madison, WI 53706 USA, Email: sybenzvi@icecube.wisc.cdu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes ISI:000275514800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 486
Permanent link to this record
 

 
Author (up) Pierre Auger Collaboration (Abraham, J. et al); Pastor, S.
Title Trigger and aperture of the surface detector array of the Pierre Auger Observatory Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 613 Issue 1 Pages 29-39
Keywords Ultra high energy cosmic rays; Auger Observatory; Extensive air showers; Trigger; Exposure
Abstract The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 10(18) eV, for all zenith angles between 0 degrees and 60 degrees, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance.
Address [Boncioli, D.; Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy, Email: giorgio.matthiae@roma2.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000274772800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 499
Permanent link to this record
 

 
Author (up) Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Identifying clouds over the Pierre Auger Observatory using infrared satellite data Type Journal Article
Year 2013 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 50-52 Issue Pages 92-101
Keywords Ultra-high energy cosmic rays; Pierre Auger Observatory; Extensive air showers; Atmospheric monitoring; Clouds; Satellites
Abstract We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.
Address [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.; Sidelnik, I.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000329271000011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1690
Permanent link to this record
 

 
Author (up) Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS) Type Journal Article
Year 2012 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 35 Issue 9 Pages 591-607
Keywords Cosmic rays; Extensive air showers; Atmospheric monitoring; Atmospheric models
Abstract Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.
Address [Baeuml, J.; Bluemer, H.; Daumiller, K.; Engel, R.; Gonzalez, J. G.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Maurel, D.; Oehlschlaeger, J.; Pierog, T.; Porcelli, A.; Roth, M.; Schieler, H.; Schroeder, F.; Smida, R.; Szuba, M.; Ulrich, R.; Unger, M.; Weindl, A.; Werner, F.; Will, M.; Wommer, M.] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany, Email: bianca.keilhauer@kit.edu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000302109200006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 965
Permanent link to this record
 

 
Author (up) Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title The exposure of the hybrid detector of the Pierre Auger Observatory Type Journal Article
Year 2011 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 34 Issue 6 Pages 368-381
Keywords Ultra high energy cosmic rays; Pierre Auger Observatory; Extensive air showers; Trigger; Exposure; Fluorescence detector; Hybrid
Abstract The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The “hybrid” detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.
Address [Ave, M.; Bluemer, H.; Daumiller, K.; Dembinski, H.; Engel, R.; Garrido, X.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Mueller, S.; Oehlschlaeger, J.; Pierog, T.; Roth, M.; Salamida, F.; Schieler, H.; Schroeder, F.; Schuessler, F.; Smida, R.; Ulrich, R.; Unger, M.; Valino, I.; Weinidl, A.; Will, M.; Wommer, M.] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany, Email: francesco.salamida@kit.edu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes ISI:000287068800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 580
Permanent link to this record