|   | 
Details
   web
Records
Author (up) Albaladejo, M.; Nieves, J.; Tolos, L.
Title D(D)over-bar* scattering and chi(c1) (3872) in nuclear matter Type Journal Article
Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 104 Issue 3 Pages 035203 - 20pp
Keywords
Abstract We study the behavior of the chi(c1) (3872), also known as X(3872), in dense nuclear matter. We begin from a picture in vacuum of the X(3872) as a purely molecular (D (D) over bar*-c.c.) state, generated as a bound state from a heavy-quark symmetry leading-order interaction between the charmed mesons, and analyze the D (D) over bar* scattering T matrix (T-D (D) over bar*) inside of the medium. Next, we consider also mixed-molecular scenarios and, in all cases, we determine the corresponding X(3872) spectral function and the D (D) over bar* amplitude, with the mesons embedded in the dense environment. We find important nuclear corrections for T-D (D) over bar* and the pole position of the resonance, and discuss the dependence of these results on the D (D) over bar* molecular component in the X(3872) wave function. These predictions could be tested in the finite-density regime that can be accessed in the future CBM and PANDA experiments at the Facility for Antiproton and Ion Research (FAIR).
Address [Albaladejo, M.] Thomas Jefferson Natl Accelerator Facil, Theory Ctr, Newport News, VA 23606 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000704558000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4999
Permanent link to this record
 

 
Author (up) Camalich, J.M.; Terol-Calvo, J.; Tolos, L.; Ziegler, R.
Title Supernova constraints on dark flavored sectors Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 12 Pages L121301 - 7pp
Keywords
Abstract Proto-neutron stars forming a few seconds after core-collapse supernovae are hot and dense environments where hyperons can be efficiently produced by weak processes. By making use of various state-of-the-art supernova simulations combined with the proper extensions of the equations of state including Lambda hyperons, we calculate the cooling of the star induced by the emission of dark particles X-0 through the decay Lambda -> nX(0). Comparing this novel energy-loss process to the neutrino cooling of SN 1987A allows us to set a stringent upper limit on the branching fraction, BR(Lambda -> nX(0)) <= 8 x 10(-9), that we apply to massless dark photons and axions with flavor-violating couplings to quarks. We find that the new supernova bound can be orders of magnitude stronger than other limits in dark-sector models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000661796900010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4874
Permanent link to this record
 

 
Author (up) Gamermann, D.; Garcia-Recio, C.; Nieves, J.; Salcedo, L.L.; Tolos, L.
Title Exotic dynamically generated baryons with negative charm quantum number Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue 9 Pages 094016 - 11pp
Keywords
Abstract Following a model based on the SU(8) symmetry that treats heavy pseudoscalars and heavy vector mesons on an equal footing, as required by heavy quark symmetry, we study the interaction of baryons and mesons in coupled channels within an unitary approach that generates dynamically poles in the scattering T-matrix. We concentrate in the exotic channels with negative charm quantum number for which there is the experimental claim of one state.
Address [Gamermann, D.; Nieves, J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Inst Invest Paterna, Valencia 46071, Spain, Email: daniel.gamermann@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000278145100034 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 438
Permanent link to this record
 

 
Author (up) Garcia-Recio, C.; Hidalgo-Duque, C.; Nieves, J.; Salcedo, L.L.; Tolos, L.
Title Compositeness of the strange, charm, and beauty odd parity Lambda states Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 92 Issue 3 Pages 034011 - 14pp
Keywords
Abstract We study the dependence on the quark mass of the compositeness of the lowest-lying odd parity hyperon states. Thus, we pay attention to Lambda-like states in the strange, charm, and beauty sectors which are dynamically generated using a unitarized meson-baryon model. In the strange sector we use a SU(6) extension of the Weinberg-Tomozawa meson-baryon interaction, and we further implement the heavy-quark spin symmetry to construct the meson-baryon interaction when charmed or beauty hadrons are involved. In the three examined flavor sectors, we obtain two J(P) = 1/2- and one J(P) = 3/2(-) Lambda states. We find that the. states which are bound states (the three Lambda(b)) or narrow resonances [one Lambda(1405) and one Lambda(c)(2595)] are well described as molecular states composed of s-wave meson-baryon pairs. The 1/2(-) wide Lambda(1405) and Lambda(c)(2595) as well as the 3/2(-) Lambda(1520) and Lambda(c)(2625) states display smaller compositeness so they would require new mechanisms, such as d-wave interactions.
Address [Garcia-Recio, C.; Salcedo, L. L.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000359356100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2364
Permanent link to this record
 

 
Author (up) Garcia-Recio, C.; Nieves, J.; Romanets, O.; Salcedo, L.L.; Tolos, L.
Title Odd parity bottom-flavored baryon resonances Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue 3 Pages 034032 - 9pp
Keywords
Abstract The LHCb Collaboration has recently observed two narrow baryon resonances with beauty. Their masses and decay modes look consistent with the quark model orbitally excited states Lambda(b)(5912) and Lambda(b)*(5920), with quantum numbers J(P) = 1/2(-) and 3/2(-), respectively. We predict the existence of these states within a unitarized meson-baryon coupled-channel dynamical model, which implements heavy-quark spin symmetry. Masses, quantum numbers and couplings of these resonances to the different meson-baryon channels are obtained. We find that the resonances Lambda(0)(b)(5912) and Lambda(0)(b)(5920) are heavy-quark spin symmetry partners, which naturally explains their approximate mass degeneracy. Corresponding bottom-strange baryon resonances are predicted at Xi(b)(6035.4) (J(P) = 1/2(-)) and Xi(b)(6043.3) (J(P) = 3/2(-)). The two Lambda(b) and two Xi(b) resonances complete a multiplet of the combined symmetry SU(3)-flavor times heavy-quark spin.
Address [Garcia-Recio, C.; Salcedo, L. L.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000315149000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1332
Permanent link to this record