|   | 
Details
   web
Records
Author (up) Caputo, A.; Reig, M.
Title Cosmic implications of a low-scale solution to the axion domain wall problem Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 6 Pages 063530 - 10pp
Keywords
Abstract The post-inflationary breaking of Peccei-Quinn (PQ) symmetry can lead to the cosmic domain wall catastrophe. In this paper we show how to avoid domain walls by implementing the instanton interference effect with a new interaction which itself breaks PQ symmetry and confines at an energy scale smaller than Lambda(QCD). We give a general description of the mechanism and consider its cosmological implications and constraints within a minimal model. Contrary to other mechanisms, we do not require an inverse phase transition or fine-tuned bias terms. Incidentally, the mechanism leads to the introduction of new self-interacting dark matter candidates and the possibility of producing gravitational waves in the frequency range of SKA. Unless a fine-tuned hidden sector is introduced, the mechanism predicts a QCD axion in the mass range 1-15 meV.
Address [Caputo, Andrea; Reig, Mario] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: andrea.caputo@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000487735200009 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4152
Permanent link to this record
 

 
Author (up) Escribano, P.; Reig, M.; Vicente, A.
Title Generalizing the Scotogenic model Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 097 - 25pp
Keywords Beyond Standard Model; Neutrino Physics; Renormalization Group
Abstract The Scotogenic model is an economical setup that induces Majorana neutrino masses at the 1-loop level and includes a dark matter candidate. We discuss a generalization of the original Scotogenic model with arbitrary numbers of generations of singlet fermion and inert doublet scalar fields. First, the full form of the light neutrino mass matrix is presented, with some comments on its derivation and with special attention to some particular cases. The behavior of the theory at high energies is explored by solving the Renormalization Group Equations.
Address [Escribano, Pablo; Reig, Mario; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pablo.escribano@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000553119900003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4477
Permanent link to this record
 

 
Author (up) Fuentes-Martin, J.; Reig, M.; Vicente, A.
Title Strong CP problem with low-energy emergent QCD: The 4321 case Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 11 Pages 115028 - 7pp
Keywords
Abstract We analyze the strong CP problem and the implications for axion physics in the context of U-1 vector leptoquark models, recently put forward as an elegant solution to the hints of lepton flavor universality violation in B-meson decays. It is shown that in minimal gauge models containing the U-1 as a gauge boson, the Peccei-Quinn solution of the strong CP problem requires the introduction of two axions. Characteristic predictions for the associated axions can be deduced from the model parameter space hinted by B-physics, allowing the new axion sector to account for the dark matter of the Universe. We also provide a specific ultraviolet completion of the axion sector that connects the Peccei-Quinn mechanism to the generation of neutrino masses.
Address [Fuentes-Martin, Javier] Univ Zurich, Phys Inst, CH-8057 Zurich, Switzerland, Email: fuentes@physik.uzh.ch;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000503048500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4226
Permanent link to this record
 

 
Author (up) Hati, C.; Patra, S.; Reig, M.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Towards gauge coupling unification in left-right symmetric SU(3)(c) x SU(3)(L) x SU(3)(R) x U(1)(X) theories Type Journal Article
Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 1 Pages 015004 - 9pp
Keywords
Abstract We consider the possibility of gauge coupling unification within the simplest realizations of the SU(3)(c) x SU(3)(L) x SU(3)(R) xU(1)(X) gauge theory. We present a first exploration of the renormalization group equations governing the “bottom-up” evolution of the gauge couplings in a generic model with free normalization for the generators. Interestingly, we find that for a SU(3)(c) x SU(3)(L) x SU(3)(R) x U(1)(X) symmetry breaking scale M-X as low as a few TeV one can achieve unification in the presence of leptonic octets. We briefly comment on possible grand unified theory frameworks which can embed the SU(3)(c) x SU(3)(L) x SU(3)(R) xU(1)(X) model as well as possible implications, such as lepton flavor violating physics at the LHC.
Address [Hati, Chandan] Phys Res Lab, Div Theoret Phys, Ahmadabad 380009, Gujarat, India, Email: chandan@prl.res.in;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000405204700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3199
Permanent link to this record
 

 
Author (up) Huang, J.W.; Madden, A.; Racco, D.; Reig, M.
Title Maximal axion misalignment from a minimal model Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 143 - 39pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM
Abstract The QCD axion is one of the best motivated dark matter candidates. The misalignment mechanism is well known to produce an abundance of the QCD axion consistent with dark matter for an axion decay constant of order 10(12) GeV. For a smaller decay constant, the QCD axion, with Peccei-Quinn symmetry broken during inflation, makes up only a fraction of dark matter unless the axion field starts oscillating very close to the top of its potential, in a scenario called “large-misalignment”. In this scenario, QCD axion dark matter with a small axion decay constant is partially comprised of very dense structures. We present a simple dynamical model realising the large-misalignment mechanism. During inflation, the axion classically rolls down its potential approaching its minimum. After inflation, the Universe reheats to a high temperature and a modulus (real scalar field) changes the sign of its minimum dynamically, which changes the sign of the mass of a vector-like fermion charged under QCD. As a result, the minimum of the axion potential during inflation becomes the maximum of the potential after the Universe has cooled through the QCD phase transition and the axion starts oscillating. In this model, we can produce QCD axion dark matter with a decay constant as low as 6 x 10(9) GeV and an axion mass up to 1 meV. We also summarise the phenomenological implications of this mechanism for dark matter experiments and colliders.
Address [Huang, Junwu; Madden, Amalia; Racco, Davide] Perimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada, Email: jhuang@perimeterinstitute.ca;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000586368800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4592
Permanent link to this record