|   | 
Details
   web
Records
Author (up) Abraham, R.M. et al; Garcia Soto, A.
Title Tau neutrinos in the next decade: from GeV to EeV Type Journal Article
Year 2022 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 49 Issue 11 Pages 110501 - 148pp
Keywords tau neutrinos; neutrino experiments; tau neutrino theory
Abstract Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.
Address [Abraham, Roshan Mammen; Ismail, Ahmed] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA, Email: pdenton@bnl.gov
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000865870700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5377
Permanent link to this record
 

 
Author (up) Ackermann, M. et al; Garcia Soto, A.
Title High-energy and ultra-high-energy neutrinos: A Snowmass white paper Type Journal Article
Year 2022 Publication Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.
Volume 36 Issue Pages 55-110
Keywords
Abstract Astrophysical neutrinos are excellent probes of astroparticle physics and high-energy physics. With energies far beyond solar, supernovae, atmospheric, and accelerator neutrinos, high-energy and ultrahigh-energy neutrinos probe fundamental physics from the TeV scale to the EeV scale and beyond. They are sensitive to physics both within and beyond the Standard Model through their production mechanisms and in their propagation over cosmological distances. They carry unique information about their extreme non-thermal sources by giving insight into regions that are opaque to electromagnetic radiation. This white paper describes the opportunities astrophysical neutrino observations offer for astrophysics and high-energy physics, today and in coming years.
Address [Ackermann, Markus] DESY, D-15738 Zeuthen, Germany, Email: markus.ackermann@desy.de;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-4048 ISBN Medium
Area Expedition Conference
Notes WOS:000890744900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5434
Permanent link to this record
 

 
Author (up) Feng, J.L. et al; Garcia Soto, A.; Hirsch, M.
Title The Forward Physics Facility at the High-Luminosity LHC Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue 3 Pages 030501 - 410pp
Keywords Forward Physics Facility; Large Hadron Collider; new particle searches; neutrinos; QCD; astroparticle physics; dark matter
Abstract High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential.
Address [Feng, Jonathan L.; Tsai, Yu-Dai; Bian, Jianming; Casper, David W.; Fieg, Max; Huang, Fei; Kuo, Jui-Lin; Wu, Wenjie] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA, Email: jlf@uci.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000934195400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5491
Permanent link to this record
 

 
Author (up) Garcia Soto, A.; Garg, D.; Reno, M.H.; Arguelles, C.A.
Title Probing quantum gravity with elastic interactions of ultrahigh-energy neutrinos Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 3 Pages 033009 - 9pp
Keywords
Abstract The next generation of radio telescopes will be sensitive to low-scale quantum gravity by measuring ultrahigh-energy neutrinos. In this work, we demonstrate for the first time that neutrino-nucleon soft interactions induced by TeV-scale gravity would significantly increase the number of events detected by the IceCube-Gen2 radio array in the EeV regime. However, we show that these experiments cannot measure the total cross section using only the angular and energy information of the neutrino flux, unless assumptions on the underlying inelasticity distribution of neutral interactions are made.
Address [Garcia-Soto, A.; Arguelles, C. A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001004183600015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5557
Permanent link to this record
 

 
Author (up) Garcia Soto, A.; Zhelnin, P.; Safa, I.; Arguelles, C.A.
Title Tau Appearance from High-Energy Neutrino Interactions Type Journal Article
Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 128 Issue 17 Pages 171101 - 7pp
Keywords
Abstract High-energy muon and electron neutrinos yield a non-negligible flux of tau neutrinos as they propagate through Earth. In this Letter, we address the impact of this additional component in the PeV and EeV energy regimes for the first time. Above 300 TeV, this contribution is predicted to be significantly larger than the atmospheric background, and it alters current and future neutrino telescopes' capabilities to discover a cosmic tau-neutrino flux. Further, we demonstrate that Earth-skimming neutrino experiments, designed to observe tau neutrinos, will be sensitive to cosmogenic neutrinos even in extreme scenarios without a primary tau-neutrino component.
Address [Soto, A. Garcia; Zhelnin, P.; Safa, I; Arguelles, C. A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: alfonsogarciasoto@fas.harvard.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000804588400008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5240
Permanent link to this record