|   | 
Details
   web
Records
Author (up) Brown, J.M.C.; Dimmock, M.R.; Gillam, J.E.; Paganin, D.M.
Title A low energy bound atomic electron Compton scattering model for Geant4 Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research B Abbreviated Journal Nucl. Instrum. Methods Phys. Res. B
Volume 338 Issue Pages 77-88
Keywords Compton scattering; Geant4; Radiation transport modelling; Monte Carlo method
Abstract A two-body fully relativistic three-dimensional scattering framework has been utilised to develop an alternative Compton scattering computational model to those adapted from Ribberfors' work for Monte Carlo modelling of Compton scattering. Using a theoretical foundation that ensures the conservation of energy and momentum in the relativistic impulse approximation, this new model, the Monash University Compton scattering model, develops energy and directional algorithms for both the scattered photon and ejected Compton electron from first principles. The Monash University Compton scattering model was developed to address the limitation of the Compton electron directionality algorithms of other computational models adapted from Ribberfors' work. Here the development of the Monash University Compton scattering model, including its implementation in a Geant4 low energy electromagnetic physics class, G4LowEPComptonModel, is outlined. Assessment of the performance of G4LowEPComptonModel was undertaken in two steps: (1) comparison with respect to the two standard Compton scattering classes of Geant4 version 9.5, G4LivermoreComptonModel and G4PenelopeComptonModel, and (2) experimental comparison with respect to Compton electron kinetic energy spectra obtained from the Compton scattering of 662 key photons off the K-shell of gold. Both studies illustrate that the Monash University Compton scattering model, and in turn G4LowEPComptonModel, is a viable replacement for the majority of computational models that have been adapted from Ribberfors' work. It was also shown that the Monash University Compton scattering model is able to reproduce the Compton scattering triply differential cross-section Compton electron kinetic energy spectra of 662 keV photons K-shell scattering off of gold to within experimental uncertainty.
Address [Brown, J. M. C.; Paganin, D. M.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia, Email: jeremy.brown@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-583x ISBN Medium
Area Expedition Conference
Notes WOS:000343390400012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1973
Permanent link to this record
 

 
Author (up) Brown, J.M.C.; Gillam, J.E.; Paganin, D.M.; Dimmock, M.R.
Title Laplacian Erosion: An Image Deblurring Technique for Multi-Plane Gamma-Cameras Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 60 Issue 5 Pages 3333-3342
Keywords
Abstract Laplacian Erosion, an image deblurring technique for multi-plane Gamma-cameras, has been developed and tested for planar imaging using a GEANT4 Monte Carlo model of the Pixelated Emission Detector for RadioisOtopes (PEDRO) as a test platform. A contrast and Derenzo-like phantom composed of I-125 were both employed to investigate the dependence of detection plane and pinhole geometry on the performance of Laplacian Erosion. Three different pinhole geometries were tested. It was found that, for the test system, the performance of Laplacian Erosion was inversely proportional to the detection plane offset, and directly proportional to the pinhole diameter. All tested pinhole geometries saw a reduction in the level of image blurring associated with the pinhole geometry. However, the reduction in image blurring came at the cost of signal to noise ratio in the image. The application of Laplacian Erosion was shown to reduce the level of image blurring associated with pinhole geometry and improve recovered image quality in multi-plane Gamma-cameras for the targeted radiotracer I-125.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000325827200020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1609
Permanent link to this record
 

 
Author (up) Dimmock, M.R.; Nikulin, D.A.; Gillam, J.E.; Nguyen, C.V.
Title An OpenCL Implementation of Pinhole Image Reconstruction Type Journal Article
Year 2012 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 59 Issue 4 Pages 1738-1749
Keywords Collimator; GPU; OpenCL; pinhole
Abstract AC++/OpenCL software platform for emission image reconstruction of data from pinhole cameras has been developed. The software incorporates a new, accurate but computationally costly, probability distribution function for operating on list-mode data from detector stacks. The platform architecture is more general than previous works, supporting advanced models such as arbitrary probability distribution, collimation geometry and detector stack geometry. The software was implemented such that all performance-critical operations occur on OpenCL devices, generally GPUs. The performance of the software is tested on several commodity CPU and GPU devices.
Address [Dimmock, Matthew R.; Nikulin, Dmitri A.; Nguyen, Chuong V.] Monash Univ, Sch Phys, Melbourne, Vic 3800, Australia, Email: matthew.dimmock@synchrotron.org.au;
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000307893900034 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1145
Permanent link to this record
 

 
Author (up) Nguyen, C.V.; Gillam, J.E.; Brown, J.M.C.; Martin, D.V.; Nikulin, D.A.; Dimmock, M.R.
Title Towards Optimal Collimator Design for the PEDRO Hybrid Imaging System Type Journal Article
Year 2011 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 58 Issue 3 Pages 639-650
Keywords Compton scattering enhancement; multiple pinhole; PEDRO
Abstract The Pixelated Emission Detector for RadiOisotopes (PEDRO) is a hybrid imaging system designed for the measurement of single photon emission from small animal models. The proof-of-principle device consists of a Compton-camera situated behind a mechanical collimator and is intended to provide optimal detection characteristics over a broad spectral range, from 30 to 511 keV. An automated routine has been developed for the optimization of large-area slits in the outer regions of a collimator which has a central region allocated for pinholes. The optimization was tested with a GEANT4 model of the experimental prototype. The data were blurred with the expected position and energy resolution parameters and a Bayesian interaction ordering algorithm was applied. Images were reconstructed using cone back-projection. The results show that the optimization technique allows the large-area slits to both sample fully and extend the primary field of view (FoV) determined by the pinholes. The slits were found to provide truncation of the back-projected cones of response and also an increase in the success rate of the interaction ordering algorithm. These factors resulted in an increase in the contrast and signal-to-noise ratio of the reconstructed image estimates. Of the two configurations tested, the cylindrical geometry outperformed the square geometry, primarily because of a decrease in artifacts. This was due to isotropic modulation of the cone surfaces, that can be achieved with a circular shape. Also, the cylindrical geometry provided increased sampling of the FoV due to more optimal positioning of the slits. The use of the cylindrical collimator and application of the transmission function in the reconstruction was found to improve the resolution of the system by a factor of 20, as compared to the uncollimated Compton camera. Although this system is designed for small animal imaging, the technique can be applied to any application of single photon imaging.
Address [Nguyen, Chuong V.; Dimmock, Matthew R.] Monash Univ, Sch Phys, Melbourne, Vic 3800, Australia, Email: chuong.nguyen@monash.edu
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes ISI:000291655900008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 650
Permanent link to this record