|   | 
Details
   web
Records
Author (up) Buchta, S.; Chachamis, G.; Draggiotis, P.; Malamos, I.; Rodrigo, G.
Title On the singular behaviour of scattering amplitudes in quantum field theory Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 014 - 13pp
Keywords QCD Phenomenology; NLO Computations
Abstract We analyse the singular behaviour of one-loop integrals and scattering amplitudes in the framework of the loop-tree duality approach. We show that there is a partial cancellation of singularities at the loop integrand level among the different components of the corresponding dual representation that can be interpreted in terms of causality. The remaining threshold and infrared singularities are restricted to a finite region of the loop momentum space, which is of the size of the external momenta and can be mapped to the phase-space of real corrections to cancel the soft and collinear divergences.
Address [Buchta, Sebastian; Chachamis, Grigorios; Malamos, Ioannis; Rodrigo, German] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: sbuchta@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000344788000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2065
Permanent link to this record
 

 
Author (up) Buchta, S.; Chachamis, G.; Draggiotis, P.; Rodrigo, G.
Title Numerical implementation of the loop-tree duality method Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue 5 Pages 274 - 15pp
Keywords
Abstract We present a first numerical implementation of the loop-tree duality (LTD) method for the direct numerical computation of multi-leg one-loop Feynman integrals. We discuss in detail the singular structure of the dual integrands and define a suitable contour deformation in the loop three-momentum space to carry out the numerical integration. Then we apply the LTD method to the computation of ultraviolet and infrared finite integrals, and we present explicit results for scalar and tensor integrals with up to eight external legs (octagons). The LTD method features an excellent performance independently of the number of external legs.
Address [Buchta, Sebastian; Rodrigo, German] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cient, Valencia 46980, Spain, Email: sbuchta@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000400642800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3115
Permanent link to this record
 

 
Author (up) Caporale, F.; Chachamis, G.; Madrigal, J.D.; Murdaca, B.; Sabio Vera, A.
Title A study of the diffusion pattern in N=4 SYM at high energies Type Journal Article
Year 2013 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 724 Issue 1-3 Pages 127-132
Keywords
Abstract In the context of evolution equations and scattering amplitudes in the high energy limit of the N = 4 super Yang-Mills theory we investigate in some detail the BFKL gluon Green function at next-to-leading order. In particular, we study its collinear behavior in terms of an expansion in different angular components. We also perform a Monte Carlo simulation of the different final states contributing to such a Green function and construct the diffusion pattern into infrared and ultraviolet modes and multiplicity distributions, making emphasis in separating the gluon contributions from those of scalars and gluinos. We find that the combined role of the non-gluonic degrees of freedom is to improve the collinear behavior and reduce the diffusion into ultraviolet regions while not having any effect on the average multiplicities or diffusion into the infrared. In terms of growth with energy, the non-zero conformal spin components are mainly driven by the gluon terms in the BFKL kernel. For zero conformal spin (Pomeron) the effect of the scalar and gluino sectors is to dramatically push the Green function towards higher values.
Address [Caporale, F.; Madrigal, J. D.; Sabio Vera, A.] UAM CSIC, Inst Fis Teor, E-28049 Madrid, Spain, Email: beatrice.murdaca@fis.unical.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000321538300022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1501
Permanent link to this record
 

 
Author (up) Chachamis, G.; Deak, M.; Hentschinski, M.; Rodrigo, G.; Sabio Vera, A.
Title Single bottom quark production in kT-factorisation Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 123 - 17pp
Keywords QCD Phenomenology; NLO Computations
Abstract We present a study within the k(T)-factorisation scheme on single bottom quark production at the LHC. In particular, we calculate the rapidity and transverse momentum differential distributions for single bottom quark/anti-quark production. In our setup, the unintegrated gluon density is obtained from the NLx BFKL Green function whereas we included mass effects to the Lx heavy quark jet vertex. We compare our results to the corresponding distributions predicted by the usual collinear factorisation scheme. The latter were produced with Pythia 8.1.
Address [Chachamis, Grigorios; Sabio Vera, Agustin] Univ Autonoma Madrid, E-28049 Madrid, Spain, Email: grigorios.chachamis@csic.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000361753300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2614
Permanent link to this record
 

 
Author (up) Chachamis, G.; Deak, M.; Rodrigo, G.
Title Heavy quark impact factor in kT-factorization Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 066 - 16pp
Keywords
Abstract We present the calculation of the finite part of the heavy quark impact factor at next-to-leading logarithmic accuracy in a form suitable for phenomenological studies such as the calculation of the cross-section for single bottom quark production at the LHC within the kT-factorization scheme.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1766
Permanent link to this record