|   | 
Details
   web
Records
Author (up) Belver, D.; Blanco, A.; Cabanelas, P.; Diaz, J.; Fonte, P.; Garzon, J.A.; Gil, A.; Gonzalez-Diaz, D.; Koenig, W.; Kolb, B.; Kornakov, G.; Lopes, L.; Palka, M.; Pereira, A.; Traxler, M.; Zumbruch, P.
Title Analysis of the space-time microstructure of cosmic ray air showers using the HADES RPC TOF wall Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages P10007 - 9pp
Keywords Resistive-plate chambers; Timing detectors; Data analysis; Particle detectors
Abstract Cosmic rays have been studied, since they were discovered one century ago, with a very broad spectrum of detectors and techniques. However, never the properties of the extended air showers (EAS) induced by high energy primary cosmic rays had been analysed at the Earth surface with a high granularity detector and a time resolution at the 0.1 ns scale. The commissioning of the timing RPC (Resistive Plate Chambers) time of flight wall of the HADES spectrometer with cosmic rays, at the GSI (Darmstadt, Germany), opened up that opportunity. During the last months of 2009, more than 500 millions of cosmic ray events were recorded by a stack of two RPC modules, of about 1.25 m(2) each, able to measure swarms of up to similar to 100 particles with a time resolution better than 100 ps. In this document it is demonstrated how such a relative small two-plane, high-granularity timing RPC setup may provide significant information about the properties of the shower and hence about the primary cosmic ray properties.
Address [Belver, D.; Cabanelas, P.; Garzon, J. A.; Kornakov, G.] USC, LabCAF, Santiago De Compostela, Spain, Email: georgui.kornakov@usc.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000310834800017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1277
Permanent link to this record
 

 
Author (up) Belver, D.; Cabanelas, P.; Castro, E.; Garzon, J.A.; Gil, A.; Gonzalez-Diaz, D.; Koenig, W.; Traxler, M.
Title Performance of the Low-Jitter High-Gain/Bandwidth Front-End Electronics of the HADES tRPC Wall Type Journal Article
Year 2010 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 57 Issue 5 Pages 2848-2856
Keywords Charge to width algorithm; fast amplifying and digitizing electronics; front-end electronics; HADES; time of flight; timing RPC
Abstract A front-end electronics (FEE) chain for accurate time measurements has been developed for the new Resistive Plate Chamber (RPC)-based Time-of-Flight (TOF) wall of the High Acceptance Di-Electron Spectrometer (HADES). The wall covers an area of around 8 m(2) divided in 6 sectors. In total, 1122 4-gap timing RPC cells are read-out by 2244 time and charge sensitive channels. The FEE chain consists of 2 custom-made boards: a 4-channel Daughter BOard(DBO) and a 32-channel MotherBOard (MBO). The DBO uses a fast 2 GHz amplifier feeding a dual high-speed discriminator. The time and charge information are encoded, respectively, in the leading edge and the width of an LVDS signal. Each MBO houses up to 8 DBOs providing them regulated voltage supply, threshold values via DACs, test signals and, additionally, routing out a signal proportional to the channel multiplicity needed for a 1st level trigger decision. The MBO delivers LVDS signals to a multi-purpose Trigger Readout Board (TRB) for data acquisition. The FEE allows achieving a system resolution around 75 ps fulfilling comfortably the requirements of the HADES upgrade [1]. The commissioning of the whole RPC wall is finished and the 6 sectors are already mounted in their final position in the HADES spectrometer and ready to take data during the beam-times foreseen for 2010.
Address [Belver, Daniel; Cabanelas, P.; Castro, E.; Garzon, J. A.] Univ Santiago Compostela, LabCAF, Santiago De Compostela 15782, Spain, Email: daniel.belver@usc.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes ISI:000283440400007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 349
Permanent link to this record
 

 
Author (up) Blanco, A.; Belver, D.; Cabanelas, P.; Diaz, J.; Fonte, P.; Garzon, J.A.; Gil, A.; Gonzalez-Diaz, D.; Koenig, W.; Kolb, B.; Lopes, L.; Palka, M.; Pereira, A.; Traxler, M.; Zumbruch, P.
Title RPC HADES-TOF wall cosmic ray test performance Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 661 Issue Pages S114-S117
Keywords Gaseous detectors; Timing; TOF; RPC; HADES
Abstract In this work we present results concerning the cosmic ray test, prior to the final installation and commissioning of the new Resistive Plate Chamber (RPC) Time of Flight (TOF) wall for the High-Acceptance DiElectron Spectrometer (HADES) at GSI. The TOF wall is composed of six equal sectors, each one constituted by 186 individual 4-gaps glass-aluminium shielded RPC cells distributed in six columns and 31 rows in two partially overlapping layers, covering an area of 1.26 m(2). All sectors were tested with the final Front End Electronic (FEE) and Data AcQuisition system (DAQ) together with Low Voltage (LV) and High Voltage (HV) systems. Results confirm a very uniform average system time resolution of 77 ps sigma together with an average multi-hit time resolution of 83 ps. Crosstalk levels below 1% (in average), moderate timing tails along with an average longitudinal position resolution of 8.4 mm sigma are also confirmed.
Address [Blanco, A.; Fonte, P.; Lopes, L.; Pereira, A.] LIP, Lab Instrumentacao & Fis Expt Particulas, Coimbra, Portugal, Email: alberto@coimbra.lip.pt
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311568900029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1285
Permanent link to this record
 

 
Author (up) Cabanelas, P. et al; Nacher, E.
Title Performance recovery of long CsI(Tl) scintillator crystals with APD-based readout Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 965 Issue Pages 163845 - 6pp
Keywords CsI(Tl) scintillator crystals; Energy resolution; Non-uniformity light output; Optical Coupling; Avalanche Photo-Diodes
Abstract CALIFA is the high efficiency and energy resolution calorimeter for the (RB)-B-3 experiment at FAIR, intended for detecting high energy light charged particles and gamma rays in scattering experiments, and is being commissioned during the Phase-0 experiments at FAIR, between 2018 and 2020. It surrounds the reaction target in a segmented configuration with 2432 detection units made of long CsI(Tl) finger-shaped scintillator crystals. CALIFA has a 10 year intended operational lifetime as the (RB)-B-3 calorimeter, necessitating measures to be taken to ensure enduring performance. In this paper we present a systematic study of two groups of 6 different detection units of the CALIFA detector after more than four years of operation. The energy resolution and light output yield are evaluated under different conditions. Tests cover the aging of the first detector units assembled and investigates recovery procedures for degraded detection units. A possible reason for the observed degradation is given, pointing to the crystal-APD coupling.
Address [Cabanelas, P.; Gonzalez, D.; Alvarez-Pol, H.; Boillos, J. M.; Cortina, D.; Feijoo, M.; Galiana, E.; Pietras, B.; Rodriguez-Sanchez, J. L.] Univ Santiago Compostela, Inst Galego Fis Altas Enerxias, E-15782 Santiago De Compostela, Spain, Email: pablo.cabanelas@usc.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000524338400006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4363
Permanent link to this record