|   | 
Details
   web
Record
Author (up) Martins, A.; da Mota, A.F.; Stanford, C.; Contreras, T.; Martin-Albo, J.; Kish, A.; Escobar, C.O.; Para, A.; Guenette, R.
Title Simple strategy for the simulation of axially symmetric large-area metasurfaces Type Journal Article
Year 2024 Publication Journal of the Optical Society of America B Abbreviated Journal J. Opt. Soc. Am. B
Volume 41 Issue 5 Pages 1261-1269
Keywords
Abstract Metalenses are composed of nanostructures for focusing light and have been widely explored in many exciting applications. However, their expanding dimensions pose simulation challenges. We propose a method to simulate metalenses in a timely manner using vectorial wave and ray tracing models. We sample the metalens's radial phase gradient and locally approximate the phase profile by a linear phase response. Each sampling point is modeled as a binary blazed grating, employing the chosen nanostructure, to build a transfer function set. The metalens transmission or reflection is then obtained by applying the corresponding transfer function to the incoming field on the regions surrounding each sampling point. Fourier optics is used to calculate the scattered fields under arbitrary illumination for the vectorial wave method, and a Monte Carlo algorithm is used in the ray tracing formalism. We validated our method against finite -difference time domain simulations at 632 nm, and we were able to simulate metalenses larger than 3000 wavelengths in diameter on a personal computer.
Address [Martins, Augusto; Guenette, Roxanne] Univ Manchester, Dept Phys, Manchester M13 9PL, England, Email: augusto.martins@york.ac.uk
Corporate Author Thesis
Publisher Optica Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0740-3224 ISBN Medium
Area Expedition Conference
Notes WOS:001237140900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6140
Permanent link to this record