|   | 
Details
   web
Records
Author Abdullahi, A.M. et al; Lopez-Pavon, J.
Title The present and future status of heavy neutral leptons Type Journal Article
Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue 2 Pages 020501 - 100pp
Keywords Neutrinos; beyond the standard model; sterile neutrinos
Abstract The existence of nonzero neutrino masses points to the likely existence of multiple Standard Model neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as heavy neutral leptons (HNLs). In this white paper, we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding of key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios.
Address [Abdullahi, Asli M.; Plestid, Ryan] Fermilab Natl Accelerator Lab, Theoret Phys Dept, POB 500, Batavia, IL 60510 USA, Email: shoemaker@vt.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000918351600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5486
Permanent link to this record
 

 
Author Capozzi, F.; Saviano, N.
Title Neutrino Flavor Conversions in High-Density Astrophysical and Cosmological Environments Type Journal Article
Year 2022 Publication Universe Abbreviated Journal Universe
Volume 8 Issue 2 Pages 94 - 23pp
Keywords astrophysical neutrinos; neutrino oscillations; supernovae; neutron star mergers; early Universe; sterile neutrinos
Abstract Despite being a well understood phenomenon in the context of current terrestrial experiments, neutrino flavor conversions in dense astrophysical environments probably represent one of the most challenging open problems in neutrino physics. Apart from being theoretically interesting, such a problem has several phenomenological implications in cosmology and in astrophysics, including the primordial nucleosynthesis of light elements abundance and other cosmological observables, nucleosynthesis of heavy nuclei, and the explosion of massive stars. In this review, we briefly summarize the state of the art on this topic, focusing on three environments: early Universe, core-collapse supernovae, and compact binary mergers.
Address [Capozzi, Francesco] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest, Paterna 46980, Spain, Email: fcapozzi@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000762069300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5146
Permanent link to this record
 

 
Author Lattanzi, M.; Lineros, R.A.; Taoso, M.
Title Connecting neutrino physics with dark matter Type Journal Article
Year 2014 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 16 Issue Pages 125012 - 19pp
Keywords neutrinos; dark matter; flavour; majoron; sterile neutrinos
Abstract The origin of neutrino masses and the nature of dark matter are two in most pressing open questions in modern astro-particle physics. We consider here the possibility that these two problems are related, and review some theoretical scenarios which offer common solutions. A simple possibility is that the dark matter particle emerges in minimal realizations of the seesaw mechanism, as in the majoron and sterile neutrino scenarios. We present the theoretical motivation for both models and discuss their phenomenology, confronting the predictions of these scenarios with cosmological and astrophysical observations. Finally, we discuss the possibility that the stability of dark matter originates from a flavor symmetry of the leptonic sector. We review a proposal based on an A(4) flavor symmetry.
Address [Lattanzi, Massimiliano] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy, Email: lattanzi@fe.infn.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000346823200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2062
Permanent link to this record
 

 
Author Papoulias, D.K.; Kosmas, T.S.; Kuno, Y.
Title Recent Probes of Standard and Non-standard Neutrino Physics With Nuclei Type Journal Article
Year 2019 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume 7 Issue Pages 191 - 25pp
Keywords coherent elastic neutrino-nucleus scattering (CENNS); non-standard interactions; electromagnetic neutrino properties; sterile neutrinos; novel mediators
Abstract We review standard and non-standard neutrino physics probes that are based on nuclear measurements. We pay special attention on the discussion of prospects to extract new physics at prominent rare event measurements looking for neutrino-nucleus scattering, such as the coherent elastic neutrino-nucleus scattering (CE nu NS) that may involve lepton flavor violation (LFV) in neutral-currents (NC). For the latter processes several appreciably sensitive experiments are currently pursued or have been planed to operate in the near future, like the COHERENT, CONUS, CONNIE, MINER, TEXONO, RED100, vGEN, Ricochet, NUCLEUS, etc. We provide a thorough discussion on phenomenological and theoretical studies, in particular those referring to the nuclear physics aspects in order to provide accurate predictions for the relevant experiments. Motivated by the recent discovery of CE nu NS at the COHERENT experiment and the active experimental efforts for a new measurement at reactor-based experiments, we summarize the current status of the constraints as well as the future sensitivities on nuclear and electroweak physics parameters, non-standard interactions, electromagnetic neutrino properties, sterile neutrinos and simplified scenarios with novel vector Z ' or scalar phi mediators. Indirect and direct connections of CE nu NS with astrophysics, direct Dark Matter detection and charge lepton flavor violating processes are also discussed.
Address [Papoulias, Dimitrios K.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Valencia, Spain, Email: dipapou@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000502131600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4224
Permanent link to this record