|   | 
Details
   web
Records
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Ruiz-Rivas, J.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope Type Journal Article
Year 2012 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 714 Issue 2-5 Pages 224-230
Keywords Neutrino oscillations; Neutrino telescope; ANTARES
Abstract The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass difference of Delta m(32)(2) = (3.1 +/- 0.9) . 10(-3) eV(2) is obtained, in good agreement with the world average value.
Address [Al Samarai, I.; Aubert, J. -J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J. -P.; Escoffier, S.; Galata, S.; Hallewell, G.; Riviere, C.; Vallee, C.; Vecchi, M.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France, Email: brunner@cppm.in2p3.fr
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000307680100008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1187
Permanent link to this record
 

 
Author Barenboim, G.; Denton, P.B.; Parke, S.J.; Ternes, C.A.
Title Neutrino oscillation probabilities through the looking glass Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 791 Issue Pages 351-360
Keywords Neutrino physics; Neutrino oscillations in matter
Abstract In this paper we review different expansions for neutrino oscillation probabilities in matter in the context of long-baseline neutrino experiments. We examine the accuracy and computational efficiency of different exact and approximate expressions. We find that many of the expressions used in the literature are not precise enough for the next generation of long-baseline experiments, but several of them are while maintaining comparable simplicity. The results of this paper can be used as guidance to both phenomenologists and experimentalists when implementing the various oscillation expressions into their analysis tools.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: gabriela.barenboim@uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000462321800051 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3958
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S.
Title A first test of the framed standard model against experiment Type Journal Article
Year 2015 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 30 Issue 11 Pages 1550051 - 34pp
Keywords Higgs boson; fermion generations; mixing and neutrino oscillations; mass hierarchy; vielbeins
Abstract The framed standard model (FSM) is obtained from the standard model by incorporating, as field variables, the frame vectors (vielbeins) in internal symmetry space. It gives the standard Higgs boson and 3 generations of quarks and leptons as immediate consequences. It gives moreover a fermion mass matrix of the form: m = mT alpha alpha dagger, where alpha is a vector in generation space independent of the fermion species and rotating with changing scale, which has already been shown to lead, generically, to up-down mixing, neutrino oscillations and mass hierarchy. In this paper, pushing the FSM further, one first derives to 1-loop order the RGE for the rotation of alpha, and then applies it to fit mass and mixing data as a first test of the model. With 7 real adjustable parameters, 18 measured quantities are fitted, most (12) to within experimental error or to better than 0.5 percent, and the rest (6) not far off. (A summary of this fit can be found in Table 2 of this paper.) Two notable features, both generic to FSM, not just specific to the fit, are: (i) that a theta-angle of order unity in the instanton term in QCD would translate via rotation into a Kobayashi-Maskawa phase in the CKM matrix of about the observed magnitude (J similar to 10(-5)), (ii) that it would come out correctly that m(u) < m(d), despite the fact that m(t) >> m(b), m(c) >> m(s). Of the 18 quantities fitted, 12 are deemed independent in the usual formulation of the standard model. In fact, the fit gives a total of 17 independent parameters of the standard model, but 5 of these have not been measured by experiment.
Address [Bordes, Jose] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000352992800009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2187
Permanent link to this record
 

 
Author Borexino Collaboration (Bellini, G. et al); Pena-Garay, C.
Title Absence of a day-night asymmetry in the Be-7 solar neutrino rate in Borexino Type Journal Article
Year 2012 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 707 Issue 1 Pages 22-26
Keywords Solar neutrinos; Day-night effect; CPT violation; Neutrino oscillations
Abstract We report the result of a search for a day-night asymmetry in the Be-7 solar neutrino interaction rate in the Borexino detector at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. The measured asymmetry is A(dn) = 0.001 +/- 0.012 (stat) +/- 0.007 (syst), in agreement with the prediction of MSW-LMA solution for neutrino oscillations. This result disfavors MSW oscillations with mixing parameters in the LOW region at more than 8.5 sigma. This region is, for the first time, strongly disfavored without the use of reactor anti-neutrino data and therefore the assumption of CPT symmetry. The result can also be used to constrain some neutrino oscillation scenarios involving new physics.
Address [Carraro, C.; Davini, S.; Guardincerri, E.; Manuzio, G.; Pallavicini, M.; Perasso, S.; Salvo, C.; Testera, G.; Zavatarelli, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy, Email: marco.pallavicini@ge.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000299757000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 901
Permanent link to this record
 

 
Author Capozzi, F.; Saviano, N.
Title Neutrino Flavor Conversions in High-Density Astrophysical and Cosmological Environments Type Journal Article
Year 2022 Publication Universe Abbreviated Journal Universe
Volume 8 Issue 2 Pages 94 - 23pp
Keywords astrophysical neutrinos; neutrino oscillations; supernovae; neutron star mergers; early Universe; sterile neutrinos
Abstract Despite being a well understood phenomenon in the context of current terrestrial experiments, neutrino flavor conversions in dense astrophysical environments probably represent one of the most challenging open problems in neutrino physics. Apart from being theoretically interesting, such a problem has several phenomenological implications in cosmology and in astrophysics, including the primordial nucleosynthesis of light elements abundance and other cosmological observables, nucleosynthesis of heavy nuclei, and the explosion of massive stars. In this review, we briefly summarize the state of the art on this topic, focusing on three environments: early Universe, core-collapse supernovae, and compact binary mergers.
Address [Capozzi, Francesco] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest, Paterna 46980, Spain, Email: fcapozzi@ific.uv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000762069300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5146
Permanent link to this record
 

 
Author de Salas, P.F.; Gariazzo, S.; Martinez-Mirave, P.; Pastor, S.; Tortola, M.
Title Cosmological radiation density with non-standard neutrino-electron interactions Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 820 Issue Pages 136508 - 9pp
Keywords Neutrino interactions; Non-standard neutrino interactions; Cosmology; Neutrino oscillations
Abstract Neutrino non-standard interactions (NSI) with electrons are known to alter the picture of neutrino de coupling from the cosmic plasma. NSI modify both flavour oscillations through matter effects, and the annihilation and scattering between neutrinos and electrons and positrons in the thermal plasma. In view of the forthcoming cosmological observations, we perform a precision study of the impact of non universal and flavour-changing NSI on the effective number of neutrinos, Neff. We present the variation of Neff arising from the different NSI parameters and discuss the existing degeneracies among them, from cosmology alone and in relation to the current bounds from terrestrial experiments. Even though cosmology is generally less sensitive to NSI than these experiments, we find that future cosmological data would provide competitive and complementary constraints for some of the couplings and their combinations.
Address [de Salas, Pablo F.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden, Email: pablo.fernandez@fysik.su.se;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000713101800031 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5023
Permanent link to this record
 

 
Author de Salas, P.F.; Gariazzo, S.; Mena, O.; Ternes, C.A.; Tortola, M.
Title Neutrino Mass Ordering From Oscillations and Beyond: 2018 Status and Future Prospects Type Journal Article
Year 2018 Publication Frontiers in Astronomy and Space Sciences Abbreviated Journal Front. Astron. Space Sci.
Volume 5 Issue Pages 36 - 50pp
Keywords neutrino mass ordering; neutrino oscillations; neutrinoless double beta (0v beta beta) decay; large scale structure formation; cosmic microwave Background (CMB); neutrino masses and flavor mixing
Abstract The ordering of the neutrino masses is a crucial input for a deep understanding of flavor physics, and its determination may provide the key to establish the relationship among the lepton masses and mixings and their analogous properties in the quark sector. The extraction of the neutrino mass ordering is a data-driven field expected to evolve very rapidly in the next decade. In this review, we both analyse the present status and describe the physics of subsequent prospects. Firstly, the different current available tools to measure the neutrino mass ordering are described. Namely, reactor, long-baseline (accelerator and atmospheric) neutrino beams, laboratory searches for beta and neutrinoless double beta decays and observations of the cosmic background radiation and the large scale structure of the universe are carefully reviewed. Secondly, the results from an up-to-date comprehensive global fit are reported: the Bayesian analysis to the 2018 publicly available oscillation and cosmological data sets provides strong evidence for the normal neutrino mass ordering vs. the inverted scenario, with a significance of 3.5 standard deviations. This preference for the normal neutrino mass ordering is mostly due to neutrino oscillation measurements. Finally, we shall also emphasize the future perspectives for unveiling the neutrinomass ordering. In this regard, apart from describing the expectations from the aforementioned probes, we also focus on those arising from alternative and novel methods, as 21 cm cosmology, core-collapse supernova neutrinos and the direct detection of relic neutrinos.
Address [de Salas, Pablo F.; Gariazzo, Stefano; Mena, Olga; Ternes, Christoph A.; Tortola, Mariam] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: omena@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-987x ISBN Medium
Area Expedition Conference
Notes WOS:000446788500001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3755
Permanent link to this record
 

 
Author de Salas, P.F.; Pastor, S.; Ternes, C.A.; Thakore, T.; Tortola, M.
Title Constraining the invisible neutrino decay with KM3NeT-ORCA Type Journal Article
Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 789 Issue Pages 472-479
Keywords Neutrino masses and mixing; Neutrino oscillations; Neutrino decay; Neutrino telescopes
Abstract Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile neutrino and, depending on the model, a scalar or a Majoron. We study the sensitivity of the forthcoming KM3NeT-ORCA experiment to this scenario and find that it could improve the current bounds coming from oscillation experiments, where three-neutrino oscillations have been considered, by roughly two orders of magnitude. We also study how the presence of this neutrino decay can affect the determination of the atmospheric oscillation parameters sin(2) theta(23) and Delta m(31)(2), as well as the sensitivity to the neutrino mass ordering.
Address [de Salas, P. F.; Pastor, S.; Ternes, C. A.; Thakore, T.; Tortola, M.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: pabferde@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000457165400063 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3902
Permanent link to this record
 

 
Author Di Molfetta, G.; Perez, A.
Title Quantum walks as simulators of neutrino oscillations in a vacuum and matter Type Journal Article
Year 2016 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 18 Issue Pages 103038 - 8pp
Keywords quantum walks; neutrino oscillations; quantum simulation
Abstract We analyze the simulation of Dirac neutrino oscillations using quantum walks, both in a vacuum and in matter. We show that this simulation, in the continuum limit, reproduces a set of coupled Dirac equations that describe neutrino flavor oscillations, and we make use of this to establish a connection with neutrino phenomenology, thus allowing one to fix the parameters of the simulation for a given neutrino experiment. We also analyze how matter effects for neutrino propagation can be simulated in the quantum walk. In this way, important features, such as the MSW effect, can be incorporated. Thus, the simulation of neutrino oscillations with the help of quantum walks might be useful to illustrate these effects in extreme conditions, such as the solar interior or supernovae.
Address [Di Molfetta, G.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: giuseppe.dimolfetta@lif.univ-mrs.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000386816100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2846
Permanent link to this record
 

 
Author Escrihuela, F.J.; Forero, D.V.; Miranda, O.G.; Tortola, M.; Valle, J.W.F.
Title Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study Type Journal Article
Year 2017 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 19 Issue Pages 093005 - 14pp
Keywords neutrino masses and mixings; neutrino oscillations; neutrino interactions
Abstract When neutrino masses arise from the exchange of neutral heavy leptons, as in most seesaw schemes, the effective lepton mixing matrix N describing neutrino propagation is non-unitary, hence neutrinos are not exactly orthonormal. New CP violation phases appear in N that could be confused with the standard phase delta(CP) characterizing the three neutrino paradigm. We study the potential of the long-baseline neutrino experiment DUNE in probing CP violation induced by the standard CP phase in the presence of non-unitarity. In order to accomplish this we develop our previous formalism, so as to take into account the neutrino interactions with the medium, important in long baseline experiments such as DUNE. We find that the expected CP sensitivity of DUNE is somewhat degraded with respect to that characterizing the standard unitary case. However the effect is weaker than might have been expected thanks mainly to the wide neutrino beam. We also investigate the sensitivity of DUNE to the parameters characterizing non-unitarity. In this case we find that there is no improvement expected with respect to the current situation, unless the near detector setup is revamped.
Address [Escrihuela, F. J.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:000410457100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3292
Permanent link to this record