|   | 
Details
   web
Records
Author Bombacigno, F.; Moretti, F.; Boudet, S.; Olmo, G.J.
Title Landau damping for gravitational waves in parity-violating theories Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 009 - 29pp
Keywords Gravitational waves in GR and beyond: theory; modified gravity; gravitational waves / experiments; dark matter experiments
Abstract We discuss how tensor polarizations of gravitational waves can suffer Landau damping in the presence of velocity birefringence, when parity symmetry is explicitly broken. In particular, we analyze the role of the Nieh-Yan and Chern-Simons terms in modified theories of gravity, showing how the gravitational perturbation in collisionless media can be characterized by a subluminal phase velocity, circumventing the well-known results of General Relativity and allowing for the appearance of the kinematic damping. We investigate in detail the connection between the thermodynamic properties of the medium, such as temperature and mass of the particles interacting with the gravitational wave, and the parameters ruling the parity violating terms of the models. In this respect, we outline how the dispersion relations can give rise in each model to different regions of the wavenumber space, where the phase velocity is subluminal, superluminal or does not exist. Quantitative estimates on the considered models indicate that the phenomenon of Landau damping is not detectable given the sensitivity of present-day instruments.
Address [Bombacigno, F.; Moretti, F.; Olmo, Gonzalo J.] Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, Carrer Doctor Moliner 50, Valencia 46100, Spain, Email: flavio2.bombacigno@uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001040875600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5624
Permanent link to this record
 

 
Author Boudet, S.; Bombacigno, F.; Moretti, F.; Olmo, G.J.
Title Torsional birefringence in metric-affine Chern-Simons gravity: gravitational waves in late-time cosmology Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 01 Issue 1 Pages 026 - 28pp
Keywords Gravitational waves in GR and beyond: theory; modified gravity; Cosmological perturbation theory in GR and beyond; Exact solutions; black holes and black hole thermodynamics in GR and beyond
Abstract In the context of the metric-affine Chern-Simons gravity endowed with projective invariance, we derive analytical solutions for torsion and nonmetricity in the homogeneous and isotropic cosmological case, described by a flat Friedmann-Robertson-Walker metric. We discuss in some details the general properties of the cosmological solutions in the presence of a perfect fluid, such as the dynamical stability and the emergence of big bounce points, and we examine the structure of some specific solutions reproducing de Sitter and power law behaviours for the scale factor. Then, we focus on first-order perturbations in the de Sitter scenario, and we study the propagation of gravitational waves in the adiabatic limit, looking at tensor and scalar polarizations. In particular, we find that metric tensor modes couple to torsion tensor components, leading to the appearance, as in the metric version of Chern-Simons gravity, of birefringence, characterized by different dispersion relations for the left and right circularized polarization states. As a result, the purely tensor part of torsion propagates like a wave, while nonmetricity decouples and behaves like a harmonic oscillator. Finally, we discuss scalar modes, outlining as they decay exponentially in time and do not propagate.
Address [Boudet, S.] Univ Trento, Dipartimento Fis, Via Sommar 14, I-38123 Povo, TN, Italy, Email: simon.boudet@unitn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001090397800016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5791
Permanent link to this record