|   | 
Details
   web
Records
Author (up) Calatayud-Jordan, J.; Candela-Juan, C.; Palma, J.D.; Pujades-Claumarchirant, M.C.; Soriano, A.; Gracia-Ochoa, M.; Vilar-Palop, J.; Vijande, J.
Title Influence of the simultaneous calibration of multiple ring dosimeters on the individual absorbed dose Type Journal Article
Year 2021 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.
Volume 41 Issue 2 Pages 384-397
Keywords ring dosimeters; personal dosimetry; calibration; Monte Carlo; ISO 4037
Abstract Ring dosimeters for personal dosimetry are calibrated in accredited laboratories following ISO 4037-3 guidelines. The simultaneous irradiation of multiple dosimeters would save time, but has to be carefully studied, since the scattering conditions could change and influence the absorbed dose in nearby dosimeters. Monte Carlo simulations using PENELOPE-2014 were performed to explore the need to increase the uncertainty of H-p (0.07) in the simultaneous irradiation of three and five DXT-RAD 707H-2 (Thermo Scientific) ring dosimeters with beam qualities: N-30, N-80 and N-300. Results show that the absorbed dose in each dosimeter is compatible with each of the others and with the reference simulation (a single dosimeter), with a coverage probability of 95% (k = 2). Comparison with experimental data yielded consistent results with the same coverage probability. Therefore, five ring dosimeters can be simultaneously irradiated with beam qualities ranging, at least, between N-30 and N-300 with a negligible impact on the uncertainty of H-p (0.07).
Address [Calatayud-Jordan, J.] Hosp Univ Politecn La Fe, Valencia, Spain, Email: calatayud_josjor@gva.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0952-4746 ISBN Medium
Area Expedition Conference
Notes WOS:000657114600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4850
Permanent link to this record
 

 
Author (up) Oliver-Canamas, L.; Vijande, J.; Candela-Juan, C.; Gimeno-Olmos, J.; Pujades-Claumarchirant, M.C.; Rovira-Escutia, J.J.; Ballester, F.; Perez-Calatayud, J.
Title A User-Friendly System for Mailed Dosimetric Audits of Ir-192 or Co-60 HDR Brachytherapy Sources Type Journal Article
Year 2023 Publication Cancers Abbreviated Journal Cancers
Volume 15 Issue 9 Pages 2484 - 14pp
Keywords high dose rate brachytherapy; dosimetric audit; error detection; phantom
Abstract Nowadays, the options available to perform external dosimetric audits of the high dose rate (HDR) brachytherapy treatment process are limited. In this work, we present a methodology that allows for performing dosimetric audits in this field. A phantom was designed and manufactured for this purpose. The criteria for its design, together with the in-house measurements for its characterization, are presented. The result is a user-friendly system that can be mailed to perform dosimetric audits in HDR brachytherapy on-site for systems using either Iridium-192 (Ir-192) or Cobalt-60 (Co-60) sources. Objectives: The main goal of this work is to design and characterize a user-friendly methodology to perform mailed dosimetric audits in high dose rate (HDR) brachytherapy for systems using either Iridium-192 (Ir-192) or Cobalt-60 (Co-60) sources. Methods: A solid phantom was designed and manufactured with four catheters and a central slot to place one dosimeter. Irradiations with an Elekta MicroSelectron V2 for Ir-192, and with a BEBIG Multisource for Co-60 were performed for its characterization. For the dose measurements, nanoDots, a type of optically stimulated luminescent dosimeters (OSLDs), were characterized. Monte Carlo (MC) simulations were performed to evaluate the scatter conditions of the irradiation set-up and to study differences in the photon spectra of different Ir-192 sources (Microselectron V2, Flexisource, BEBIG Ir2.A85-2 and Varisource VS2000) reaching the dosimeter in the irradiation set-up. Results: MC simulations indicate that the surface material on which the phantom is supported during the irradiations does not affect the absorbed dose in the nanoDot. Generally, differences below 5% were found in the photon spectra reaching the detector when comparing the Microselectron V2, the Flexisource and the BEBIG models. However, differences up to 20% are observed between the V2 and the Varisource VS2000 models. The calibration coefficients and the uncertainty in the dose measurement were evaluated. Conclusions: The system described here is able to perform dosimetric audits in HDR brachytherapy for systems using either Ir-192 or Co-60 sources. No significant differences are observed between the photon spectra reaching the detector for the MicroSelectron V2, the Flexisource and the BEBIG Ir-192 sources. For the Varisource VS2000, a higher uncertainty is considered in the dose measurement to allow for the nanoDot response.
Address [Oliver-Canamas, Laura] Serv Radiofis & Proteccio Radiol, Consorci Hospitalari Prov Castello CHPC, Castellon de La Plana 12002, Spain, Email: laura.oliver.canas@gmail.com
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000987247100001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5542
Permanent link to this record
 

 
Author (up) Vijande, J.; Ballester, F.; Ouhib, Z.; Granero, D.; Pujades-Claumarchirant, M.C.; Perez-Calatayud, J.
Title Dosimetry comparison between TG-43 and Monte Carlo calculations using the Freiburg flap for skin high-dose-rate brachytherapy Type Journal Article
Year 2012 Publication Brachytherapy Abbreviated Journal Brachytherapy
Volume 11 Issue 6 Pages 528-535
Keywords Ir-192; Brachytherapy; Dosimetry; Penelope2008; Freiburg flap
Abstract PURPOSE: The purpose of this work was to evaluate whether the delivered dose to the skin surface and at the prescription depth when using a Freiburg flap applicator is in agreement with the one predicted by the treatment planning system (TPS) using the TG-43 dose-calculation formalism. METHODS AND MATERIALS: Monte Carlo (MC) simulations and radiochromic film measurements have been performed to obtain dose distributions with the source located at the center of one of the spheres and between two spheres. Primary and scatter dose contributions were evaluated to understand the role played by the scatter component. A standard treatment plan was generated using MC- and TG-43-based TPS applying the superposition principle. RESULTS: The MC model has been validated by performing additional simulations in the same conditions but transforming air and Freiburg flap materials into water to match TG-43 parameters. Both dose distributions differ less than 1%. Scatter defect compared with TG-43 data is up to 15% when the source is located at the center of the sphere and up to 25% when the source is between two spheres. Maximum deviations between TPS- and MC-based distributions are of 5%. CONCLUSIONS: The deviations in the TG-43-based dose distributions for a standard treatment plan with respect to the MC dose distribution calculated taking into account the composition and shape of the applicator and the surrounding air are lower than 5%. Therefore, this study supports the validity of the TPS used in clinical practice. (C) 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Address [Vijande, Javier; Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: javier.vijande@uv.es
Corporate Author Thesis
Publisher Elsevier Science Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1538-4721 ISBN Medium
Area Expedition Conference
Notes WOS:000310863700018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1227
Permanent link to this record